Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 14(2)2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38251107

RESUMEN

The optical properties of light-absorbing materials in optical shutter devices are critical to the use of such platforms for optical applications. We demonstrate switchable optical properties of dyes and nanoparticles in liquid-based electrowetting-on-dielectric (EWOD) devices. Our work uses narrow-band-absorbing dyes and nanoparticles, which are appealing for spectral-filtering applications targeting specific wavelengths while maintaining device transparency at other wavelengths. Low-voltage actuation of boron dipyromethene (BODIPY) dyes and nanoparticles (Ag and CdSe) was demonstrated without degradation of the light-absorbing materials. Three BODIPY dyes were used, namely Abs 503 nm, 535 nm and 560 nm for dye 1 (BODIPY-core), 2 (I2BODIPY) and 3 (BODIPY-TMS), respectively. Reversible and low-voltage (≤20 V) switching of dye optical properties was observed as a function of device pixel dimensions (300 × 900, 200 × 600 and 150 × 450 µm). Low-voltage and reversible switching was also demonstrated for plasmonic and semiconductor nanoparticles, such as CdSe nanotetrapods (abs 508 nm), CdSe nanoplatelets (Abs 461 and 432 nm) and Ag nanoparticles (Abs 430 nm). Nanoparticle-based devices showed minimal hysteresis as well as faster relaxation times. The study presented can thus be extended to a variety of nanomaterials and dyes having the desired optical properties.

2.
Biomaterials ; 301: 122286, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37643490

RESUMEN

Versatile silk protein-based material formats were studied to demonstrate bioresorbable, implantable optical oxygen sensors that can integrate with the surrounding tissues. The ability to continuously monitor tissue oxygenation in vivo is desired for a range of medical applications. Silk was chosen as the matrix material due to its excellent biocompatibility, its unique chemistry that facilitates interactions with chromophores, and the potential to tune degradation time without altering chemical composition. A phosphorescent Pd (II) benzoporphyrin chromophore was incorporated to impart oxygen sensitivity. Organic solvent-based processing methods using 1,1,1,3,3,3-hexafluoro-2-propanol were used to fabricate: 1) silk-chromophore films with varied thickness and 2) silk-chromophore sponges with interconnected porosity. All compositions were biocompatible and exhibited photophysical properties with oxygen sensitivities (i.e., Stern-Volmer quenching rate constants of 2.7-3.2 × 104 M-1) useful for monitoring physiological tissue oxygen levels and for detecting deviations from normal behavior (e.g., hyperoxia). The potential to tune degradation time without significantly impacting photophysical properties was successfully demonstrated. Furthermore, the ability to consistently monitor tissue oxygenation in vivo was established via a multi-week rodent study. Histological assessments indicated successful tissue integration for the sponges, and this material format responded more quickly to various oxygen challenges than the film samples.


Asunto(s)
Implantes Absorbibles , Oxígeno , Porosidad , Seda
3.
Angew Chem Int Ed Engl ; 62(22): e202219140, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-36988076

RESUMEN

The use of visible light to drive polymerizations with spatiotemporal control offers a mild alternative to contemporary UV-light-based production of soft materials. In this spectral region, photoredox catalysis represents the most efficient polymerization method, yet it relies on the use of heavy-atoms, such as precious metals or toxic halogens. Herein, spin-orbit charge transfer intersystem crossing from boron dipyrromethene (BODIPY) dyads bearing twisted aromatic groups is shown to enable efficient visible light polymerizations in the absence of heavy-atoms. A ≈5-15× increase in polymerization rate and improved photostability was achieved for twisted BODIPYs relative to controls. Furthermore, monomer polarity had a distinct effect on polymerization rate, which was attributed to charge transfer stabilization based on ultrafast transient absorption and phosphorescence spectroscopies. Finally, rapid and high-resolution 3D printing with a green LED was demonstrated using the present photosystem.

4.
Phys Chem Chem Phys ; 23(21): 12033-12044, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-33942042

RESUMEN

Four core and six distyryl-extended methylated-meso-phenyl-BODIPY dyes with varying iodine content were synthesized. The influence of iodine loading and substitution position on the photophysical properties of these chromophores was evaluated. Selective iodine insertion at the 2- and 6-positions of the methylated-meso-phenyl-BODIPY core, rather than maximum iodine content, resulted in the highest intersystem crossing efficiency. Iodination of the distyryl-extended BODIPY core afforded intersystem crossing quantum yields comparable to 2,6-diiodo-BODIPY. Inclusion of an iodine at the para-meso-phenyl position generally enhanced non-radiative decay in the BODIPY excited-state, leading to lower fluorescence and intersystem crossing quantum yield values. Iodine substitution at the styryl-positions resulted in negligible changes to the excited-state dynamics. This study highlights: (1) the rate of radiative decay is similar in all ten derivatives (on the order of 1 × 108 s-1), (2) iodination of the 2,6-positions results in the greatest enhancement of intersystem crossing efficiency, (3) care must be taken when modifying the para-meso-phenyl position as it could have detrimental effects on the excited-state dynamics, (4) the excited-state is negligibly affected by iodination of the styryl groups, potentially enabling orthogonal functionalization without modifying the molecular photophysics, (5) distyryl extension of the chromophore core diminishes rates of non-radiative decay and intersystem crossing, resulting in higher fluorescence quantum yields and lower intersystem crossing yields in the π-extended derivatives compared to the core BDP derivatives, and (6) DFT calculations provide insight into the electronic and structural factors regulating intersystem crossing and vibrational relaxation in these molecules.

5.
ACS Appl Mater Interfaces ; 10(46): 40070-40077, 2018 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-30379059

RESUMEN

An all-acceptor napthalenediimide-bithiazole-based co-polymer, P(NDI2OD-BiTz), was synthesized and characterized for application in thin-film transistors. Density functional theory calculations point to an optimal perpendicular dihedral angle of 90° between acceptor units along isolated polymer chains; yet optimized transistors yield electron mobility of 0.11 cm2/(V s) with the use of a zwitterionic naphthalene diimide interlayer. Grazing incidence X-ray diffraction measurements of annealed films reveal that P(NDI2OD-BiTz) adopts a highly ordered edge-on orientation, exactly opposite to similar bithiophene analogs. This report highlights an NDI and thiazole all-acceptor polymer and demonstrates high electron mobility despite its nonplanar backbone conformation.

6.
Macromol Rapid Commun ; 33(9): 819-26, 2012 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-22488587

RESUMEN

We report the synthesis and solution characterization of poly(L-lysine)-b-poly(propylene oxide)-b-poly(L-lysine) (KPK) triblock copolymers with high lysine weight fractions (>75 wt%). In contrast to PK diblock copolymers in this composition range, KPK triblock copolymers exhibit morphology transitions as a function of pH. Using a combination of light-scattering and microscopy techniques, we demonstrate spherical micelle-vesicle and spherical micelle-disk micelle transitions for different K fractions. We interpret these morphology changes in terms of the energy penalty associated with folding the core P block to form a spherical micelle in relation to the interfacial curvature associated with different charged states of the K block.


Asunto(s)
Micelas , Polilisina/análogos & derivados , Glicoles de Propileno/química , Dicroismo Circular , Concentración de Iones de Hidrógeno , Luz , Microscopía de Fuerza Atómica , Conformación Molecular , Peso Molecular , Nanosferas/química , Nanosferas/ultraestructura , Polilisina/química , Polimerizacion , Dispersión de Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...