Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Neurohospitalist ; 14(2): 147-156, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38666272

RESUMEN

Over 2.6 million adults over the age of 65 develop delirium each year in the United States (US). Delirium is associated with a significant increase in mortality and the US health care costs associated with delirium are estimated at over $164 billion annually. Despite the prevalence of the condition, the molecular pathophysiology of delirium remains unexplained, limiting the development of pharmacotherapies. Delirious patients can be identified by prominent impairments in attention and working memory (WM), two cognitive domains that localize to the dorsolateral prefrontal cortex (dlPFC). The dlPFC is also a key site for Alzheimer's disease (AD) pathology, and given the high risk of delirium in AD patients, suggests that efforts at understanding delirium might focus on the dlPFC as a final common endpoint for cognitive changes. Preclinical studies of the dlPFC reproduce many of the pharmacological observations made of delirious patients, including sensitivity to anticholinergics and an 'inverted U' pattern of dependence on monoaminergic input, with diminished performance outside a narrow range of signaling. Medications like guanfacine, which influence the dlPFC in the context of attention-deficit/hyperactivity disorder (ADHD), have emerged as therapies for delirium and motivate a detailed understanding of the influence of α-2 agonists on WM. In this review, I will discuss the neural circuitry and molecular mechanisms underlying WM and the function of the dlPFC. Localizing the cognitive deficits that are commonly seen in delirious patients may help identify new molecular targets for this highly prevalent disease.

2.
Front Cell Neurosci ; 18: 1321682, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38469353

RESUMEN

Mature oligodendrocytes (OLG) are the myelin-forming cells of the central nervous system. Recent work has shown a dynamic role for these cells in the plasticity of neural circuits, leading to a renewed interest in voltage-sensitive currents in OLG. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and their respective current (Ih) were recently identified in mature OLG and shown to play a role in regulating myelin length. Here we provide a biochemical and electrophysiological characterization of HCN channels in cells of the oligodendrocyte lineage. We observed that mice with a nonsense mutation in the Hcn2 gene (Hcn2ap/ap) have less white matter than their wild type counterparts with fewer OLG and fewer oligodendrocyte progenitor cells (OPCs). Hcn2ap/ap mice have severe motor impairments, although these deficits were not observed in mice with HCN2 conditionally eliminated only in oligodendrocytes (Cnpcre/+; Hcn2F/F). However, Cnpcre/+; Hcn2F/F mice develop motor impairments more rapidly in response to experimental autoimmune encephalomyelitis (EAE). We conclude that HCN2 channels in OLG may play a role in regulating metabolism.

4.
Neurohospitalist ; 13(2): 173-177, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37064939

RESUMEN

Meningitis and encephalitis are neurologic emergencies that require immediate management and current guidelines recommend empiric treatment with broad-spectrum antimicrobials. Cerebrospinal fluid (CSF) testing algorithms are heterogeneous and largely institution-specific, reflecting a lack of consensus on how to effectively identify CSF pathogens while conserving resources and avoiding false positives. Moreover, many lumbar punctures (LPs) performed in the inpatient setting are done for noninfectious workups, such as evaluation for leptomeningeal metastasis. As such, tailoring CSF testing to clinical context has been a focus of multiple prior reports and several healthcare systems have focused on efforts to limit low-yield diagnostic testing when a positive result is unlikely. To curb ordering viral PCRs when pre-test probability is low, some peer institutions have implemented pleocytosis criteria for virus-specific polymerase chain reaction (PCR) tests from CSF. In this report, we retrospectively analyzed the diagnostic testing of CSF from patients who had an LP while admitted to a single, large academic medical center and found that many cases of Herpes Simplex Virus (HSV) meningoencephalitis were diagnosed by non-neurologists. The rate of positive virus-specific PCR tests was very low, and tests were frequently ordered in duplicate with a multiplexed meningitis/encephalitis PCR panel (M/E panel, BioFire, Salt Lake City, UT). We designed and implemented a systems-level intervention to promote a revised stepwise testing algorithm that minimizes unnecessary tests. This intervention led to a significant reduction in the number of low-yield virus-specific PCR tests ordered without implementing a policy of cancelling virus-specific PCRs.

7.
J Biol Chem ; 298(7): 102069, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35623388

RESUMEN

Major depressive disorder is a critical public health problem with a lifetime prevalence of nearly 17% in the United States. One potential therapeutic target is the interaction between hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and an auxiliary subunit of the channel named tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b). HCN channels regulate neuronal excitability in the mammalian hippocampus, and recent work has established that antagonizing HCN function rescues cognitive impairment caused by chronic stress. Here, we utilize a high-throughput virtual screen to find small molecules capable of disrupting the TRIP8b-HCN interaction. We found that the hit compound NUCC-0200590 disrupts the TRIP8b-HCN interaction in vitro and in vivo. These results provide a compelling strategy for developing new small molecules capable of disrupting the TRIP8b-HCN interaction.


Asunto(s)
Trastorno Depresivo Mayor , Animales , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Trastorno Depresivo Mayor/metabolismo , Hipocampo/metabolismo , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Mamíferos/metabolismo , Neuronas/metabolismo
8.
Sci Transl Med ; 13(621): eabl4580, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34818058

RESUMEN

Hyperpolarization-activated cyclic nucleotide­gated (HCN) channels regulate neuronal excitability and represent a possible therapeutic target for major depressive disorder (MDD). These channels are regulated by intracellular cyclic adenosine monophosphate (cAMP). However, the relationship between cAMP signaling and the influence of HCN channels on behavior remains opaque. In this study, we investigated the role of hippocampal cAMP signaling on behavior using chemogenetic technology in mice. Acutely increasing cAMP limited spatial memory and motivated behavior by increasing HCN function. However, chronically elevated cAMP limited surface trafficking of HCN channels by disrupting the interaction between HCN and tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b), an auxiliary subunit. Chronically increased cAMP in the dorsal hippocampus was also sufficient to rescue cognitive deficits induced by chronic stress in mice. These results reveal a behaviorally relevant form of regulation of HCN channel surface expression that has potential as a therapeutic target for cognitive deficits related to chronic stress.


Asunto(s)
Canales Catiónicos Regulados por Nucleótidos Cíclicos , Trastorno Depresivo Mayor , Animales , Conducta Animal , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/uso terapéutico , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Mayor/metabolismo , Hipocampo/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Ratones
9.
Channels (Austin) ; 14(1): 110-122, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32189562

RESUMEN

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are expressed throughout the mammalian central nervous system (CNS). These channels have been implicated in a wide range of diseases, including Major Depressive Disorder and multiple subtypes of epilepsy. The diversity of functions that HCN channels perform is in part attributable to differences in their subcellular localization. To facilitate a broad range of subcellular distributions, HCN channels are bound by auxiliary subunits that regulate surface trafficking and channel function. One of the best studied auxiliary subunits is tetratricopeptide-repeat containing, Rab8b-interacting protein (TRIP8b). TRIP8b is an extensively alternatively spliced protein whose only known function is to regulate HCN channels. TRIP8b binds to HCN pore-forming subunits at multiple interaction sites that differentially regulate HCN channel function and subcellular distribution. In this review, we summarize what is currently known about the structure and function of TRIP8b isoforms with an emphasis on the role of this auxiliary subunit in health and disease.


Asunto(s)
Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/química , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Epilepsia/genética , Epilepsia/metabolismo , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Modelos Biológicos , Fosforilación , Receptores Citoplasmáticos y Nucleares/genética
10.
Epilepsy Curr ; 19(6): 408-410, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31495198

RESUMEN

[Box: see text].

11.
J Biol Chem ; 294(43): 15743-15758, 2019 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-31492750

RESUMEN

Temporal lobe epilepsy (TLE) is a prevalent neurological disorder with many patients experiencing poor seizure control with existing anti-epileptic drugs. Thus, novel insights into the mechanisms of epileptogenesis and identification of new drug targets can be transformative. Changes in ion channel function have been shown to play a role in generating the aberrant neuronal activity observed in TLE. Previous work demonstrates that hyperpolarization-activated cyclic nucleotide-gated (HCN) channels regulate neuronal excitability and are mislocalized within CA1 pyramidal cells in a rodent model of TLE. The subcellular distribution of HCN channels is regulated by an auxiliary subunit, tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b), and disruption of this interaction correlates with channel mislocalization. However, the molecular mechanisms responsible for HCN channel dysregulation in TLE are unclear. Here we investigated whether changes in TRIP8b phosphorylation are sufficient to alter HCN channel function. We identified a phosphorylation site at residue Ser237 of TRIP8b that enhances binding to HCN channels and influences channel gating by altering the affinity of TRIP8b for the HCN cytoplasmic domain. Using a phosphospecific antibody, we demonstrate that TRIP8b phosphorylated at Ser237 is enriched in CA1 distal dendrites and that phosphorylation is reduced in the kainic acid model of TLE. Overall, our findings indicate that the TRIP8b-HCN interaction can be modulated by changes in phosphorylation and suggest that loss of TRIP8b phosphorylation may affect HCN channel properties during epileptogenesis. These results highlight the potential of drugs targeting posttranslational modifications to restore TRIP8b phosphorylation to reduce excitability in TLE.


Asunto(s)
Epilepsia del Lóbulo Temporal/metabolismo , Proteínas de la Membrana/metabolismo , Peroxinas/metabolismo , Subunidades de Proteína/metabolismo , Secuencia de Aminoácidos , Animales , Encéfalo/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Dendritas/metabolismo , Modelos Animales de Enfermedad , Femenino , Células HEK293 , Humanos , Activación del Canal Iónico , Ácido Kaínico , Proteínas de la Membrana/química , Ratones Endogámicos C57BL , Peroxinas/química , Fosforilación , Fosfoserina/metabolismo , Subunidades de Proteína/química , Ratas Sprague-Dawley , Reproducibilidad de los Resultados
12.
Epilepsy Curr ; 19(5): 339-340, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31409147

RESUMEN

[Box: see text].

13.
Epilepsy Curr ; 19(3): 182-183, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31035818

RESUMEN

Srivastava PK, van Eyll J, Godard P, Mazzuferi M, Delahaye-Duriez A, Steenwinckel JV, et al. A systems-level framework for drug discovery identifies Csf1R as an anti-epileptic drug target. Nat Commun. 2018;9(1):3561. doi:10.1038/s41467-018-06008-4. The identification of drug targets is highly challenging, particularly for diseases of the brain. To address this problem, we developed and experimentally validated a general computational framework for drug target discovery that combines gene regulatory information with causal reasoning ("Causal Reasoning Analytical Framework for Target discovery"-CRAFT). Using a systems genetics approach and starting from gene expression data from the target tissue, CRAFT provides a predictive framework for identifying cell membrane receptors with a direction-specified influence over disease-related gene expression profiles. As proof of concept, we applied CRAFT to epilepsy and predicted the tyrosine kinase receptor Csf1R as a potential therapeutic target. The predicted effect of Csf1R blockade in attenuating epilepsy seizures was validated in 3 preclinical models of epilepsy. These results highlight CRAFT as a systems-level framework for target discovery and suggest Csf1R blockade as a novel therapeutic strategy in epilepsy. The CRAFT is applicable to disease settings other than epilepsy.

14.
Cerebellum ; 18(6): 1036-1063, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31124049

RESUMEN

Tremor is the most common movement disorder; however, we are just beginning to understand the brain circuitry that generates tremor. Various neuroimaging, neuropathological, and physiological studies in human tremor disorders have been performed to further our knowledge of tremor. But, the causal relationship between these observations and tremor is usually difficult to establish and detailed mechanisms are not sufficiently studied. To overcome these obstacles, animal models can provide an important means to look into human tremor disorders. In this manuscript, we will discuss the use of different species of animals (mice, rats, fruit flies, pigs, and monkeys) to model human tremor disorders. Several ways to manipulate the brain circuitry and physiology in these animal models (pharmacology, genetics, and lesioning) will also be discussed. Finally, we will discuss how these animal models can help us to gain knowledge of the pathophysiology of human tremor disorders, which could serve as a platform towards developing novel therapies for tremor.


Asunto(s)
Encéfalo/diagnóstico por imagen , Consenso , Testimonio de Experto , Modelos Animales , Red Nerviosa/diagnóstico por imagen , Temblor/diagnóstico por imagen , Animales , Encéfalo/fisiopatología , Drosophila , Testimonio de Experto/normas , Haplorrinos , Ratones , Red Nerviosa/fisiopatología , Ratas , Porcinos , Temblor/fisiopatología
15.
Epilepsy Curr ; 19(2): 122-123, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30955425

RESUMEN

A Mild PUM1 Mutation Is Associated With Adult-Onset Ataxia, Whereas Haploinsufficiency Causes Developmental Delay and Seizures Gennarino VA, Palmer EE, McDonell LM, et al. Cell. 2018;172(5):924-936.e11. doi:10.1016/j.cell.2018.02.006. Certain mutations can cause proteins to accumulate in neurons, leading to neurodegeneration. We recently showed, however, that upregulation of a wild-type protein, Ataxin1, caused by haploinsufficiency of its repressor, the RNA-binding protein Pumilio1 (PUM1), also causes neurodegeneration in mice. We therefore searched for human patients with PUM1 mutations. We identified 11 individuals with either PUM1 deletions or de novo missense variants who suffer a developmental syndrome (PUM1-associated developmental disability, ataxia, and seizure). We also identified a milder missense mutation in a family with adult-onset ataxia with incomplete penetrance (PUM1-related cerebellar ataxia). Studies in patient-derived cells revealed that the missense mutations reduced PUM1 protein levels by ∼25% in the adult-onset cases and by ∼50% in the infantile-onset cases; levels of known PUM1 targets increased accordingly. Changes in protein levels thus track with phenotypic severity, and identifying posttranscriptional modulators of protein expression should identify new candidate disease genes.

16.
Epilepsy Curr ; 18(6): 396-397, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30568560
17.
Epilepsy Curr ; 18(3): 180-181, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29950943
18.
J Neurochem ; 146(6): 753-766, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29953635

RESUMEN

Active coping is an adaptive stress response that improves outcomes in medical and neuropsychiatric diseases. To date, most research into coping style has focused on neurotransmitter activity and little is known about the intrinsic excitability of neurons in the associated brain regions that facilitate coping. Previous studies have shown that HCN channels regulate neuronal excitability in pyramidal cells and that HCN channel current (Ih ) in the CA1 area increases with chronic mild stress. Reduction of Ih in the CA1 area leads to antidepressant-like behavior, and this region has been implicated in the regulation of coping style. We hypothesized that the antidepressant-like behavior achieved with CA1 knockdown of Ih is accompanied by increases in active coping. In this report, we found that global loss of TRIP8b, a necessary subunit for proper HCN channel localization in pyramidal cells, led to active coping behavior in numerous assays specific to coping style. We next employed a viral strategy using a dominant negative TRIP8b isoform to alter coping behavior by reducing HCN channel expression. This approach led to a robust reduction in Ih in CA1 pyramidal neurons and an increase in active coping. Together, these results establish that changes in HCN channel function in CA1 influences coping style.


Asunto(s)
Adaptación Psicológica/fisiología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Proteínas de la Membrana/metabolismo , Peroxinas/metabolismo , Animales , Reacción de Prevención/fisiología , Depresión/fisiopatología , Modelos Animales de Enfermedad , Conducta Exploratoria , Hipocampo/citología , Hipocampo/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/ultraestructura , Masculino , Aprendizaje por Laberinto , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Electrónica , Peroxinas/genética , Células Piramidales/metabolismo , Natación/psicología
19.
Mol Neurobiol ; 55(9): 7500-7511, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29427087

RESUMEN

Neuroinflammation is consistently found in many neurological disorders, but whether or not the inflammatory response independently affects neuronal network properties is poorly understood. Here, we report that intracerebroventricular injection of the prototypical inflammatory molecule lipopolysaccharide (LPS) in rats triggered a strong and long-lasting inflammatory response in hippocampal microglia associated with a concomitant upregulation of Toll-like receptor (TLR4) in pyramidal and hilar neurons. This, in turn, was associated with a significant reduction of the dendritic hyperpolarization-activated cyclic AMP-gated channel type 1 (HCN1) protein level while Kv4.2 channels were unaltered as assessed by western blot. Immunohistochemistry confirmed the HCN1 decrease in CA1 pyramidal neurons and showed that these changes were associated with a reduction of TRIP8b, an auxiliary subunit for HCN channels implicated in channel subcellular localization and trafficking. At the physiological level, this effect translated into a 50% decrease in HCN1-mediated currents (Ih) measured in the distal dendrites of hippocampal CA1 pyramidal cells. At the functional level, the band-pass-filtering properties of dendrites in the theta frequency range (4-12 Hz) and their temporal summation properties were compromised. We conclude that neuroinflammation can independently trigger an acquired channelopathy in CA1 pyramidal cell dendrites that alters their integrative properties. By directly changing cellular function, this phenomenon may participate in the phenotypic expression of various brain diseases.


Asunto(s)
Hipocampo/patología , Inflamación/patología , Células Piramidales/patología , Animales , Dendritas/metabolismo , Regulación hacia Abajo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Lipopolisacáridos , Masculino , Proteínas de la Membrana/metabolismo , Microglía/metabolismo , Microglía/patología , Canales de Potasio/metabolismo , Células Piramidales/metabolismo , Ratas Sprague-Dawley , Factores de Tiempo , Receptor Toll-Like 4/metabolismo
20.
J Biol Chem ; 292(43): 17718-17730, 2017 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-28887304

RESUMEN

Tetratricopeptide repeat (TPR) domains are ubiquitous structural motifs that mediate protein-protein interactions. For example, the TPR domains in the peroxisomal import receptor PEX5 enable binding to a range of type 1 peroxisomal targeting signal motifs. A homolog of PEX5, tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b), binds to and functions as an auxiliary subunit of hyperpolarization-activated cyclic nucleotide (HCN)-gated channels. Given the similarity between TRIP8b and PEX5, this difference in function raises the question of what mechanism accounts for their binding specificity. In this report, we found that the cyclic nucleotide-binding domain and the C terminus of the HCN channel are critical for conferring specificity to TRIP8b binding. We show that TRIP8b binds the HCN cyclic nucleotide-binding domain through a 37-residue domain and the HCN C terminus through the TPR domains. Using a combination of fluorescence polarization- and co-immunoprecipitation-based assays, we establish that binding at either site increases affinity at the other. Thus, allosteric coupling of the TRIP8b TPR domains both promotes binding to HCN channels and limits binding to type 1 peroxisomal targeting signal substrates. These results raise the possibility that other TPR domains may be similarly influenced by allosteric mechanisms as a general feature of protein-protein interactions.


Asunto(s)
Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Subunidades de Proteína/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Regulación Alostérica/fisiología , Sitios de Unión , Células HEK293 , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Subunidades de Proteína/genética , Receptores Citoplasmáticos y Nucleares/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...