Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Phys Lipids ; 235: 105050, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33422547

RESUMEN

Phospholipase C (PLC) ß and ε enzymes hydrolyze phosphatidylinositol (PI) lipids in response to direct interactions with heterotrimeric G protein subunits and small GTPases, which are activated downstream of G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs). PI hydrolysis generates second messengers that increase the intracellular Ca2+ concentration and activate protein kinase C (PKC), thereby regulating numerous physiological processes. PLCß and PLCε share a highly conserved core required for lipase activity, but use different strategies and structural elements to autoinhibit basal activity, bind membranes, and engage G protein activators. In this review, we discuss recent structural insights into these enzymes and the implications for how they engage membranes alone or in complex with their G protein regulators.


Asunto(s)
Membrana Celular/metabolismo , Fosfoinositido Fosfolipasa C/metabolismo , Fosfolipasa C beta/metabolismo , Membrana Celular/química , Humanos , Modelos Moleculares , Fosfoinositido Fosfolipasa C/química , Fosfolipasa C beta/química , Conformación Proteica
2.
Mol Cell ; 80(6): 933-934, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33338407

RESUMEN

Pfeil et al., (2020) examine the mechanism of Gi-stimulated Ca2+ release in cells and find an unexpected role for Gαq in Gßγ-dependent activation of phospholipase Cß (PLCß).


Asunto(s)
Calcio , Subunidades alfa de la Proteína de Unión al GTP Gq-G11 , Calcio/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Fosfolipasa C beta/genética , Fosfolipasa C beta/metabolismo , Transducción de Señal
3.
J Biol Chem ; 295(49): 16562-16571, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-32948655

RESUMEN

Phospholipase Cε (PLCε) is activated downstream of G protein-coupled receptors and receptor tyrosine kinases through direct interactions with small GTPases, including Rap1A and Ras. Although Ras has been reported to allosterically activate the lipase, it is not known whether Rap1A has the same ability or what its molecular mechanism might be. Rap1A activates PLCε in response to the stimulation of ß-adrenergic receptors, translocating the complex to the perinuclear membrane. Because the C-terminal Ras association (RA2) domain of PLCε was proposed to the primary binding site for Rap1A, we first confirmed using purified proteins that the RA2 domain is indeed essential for activation by Rap1A. However, we also showed that the PLCε pleckstrin homology (PH) domain and first two EF hands (EF1/2) are required for Rap1A activation and identified hydrophobic residues on the surface of the RA2 domain that are also necessary. Small-angle X-ray scattering showed that Rap1A binding induces and stabilizes discrete conformational states in PLCε variants that can be activated by the GTPase. These data, together with the recent structure of a catalytically active fragment of PLCε, provide the first evidence that Rap1A, and by extension Ras, allosterically activate the lipase by promoting and stabilizing interactions between the RA2 domain and the PLCε core.


Asunto(s)
Fosfoinositido Fosfolipasa C/metabolismo , Proteínas de Unión al GTP rap1/metabolismo , Regulación Alostérica , GTP Fosfohidrolasas/metabolismo , Humanos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Fosfoinositido Fosfolipasa C/química , Fosfoinositido Fosfolipasa C/genética , Dominios Homólogos a Pleckstrina , Unión Proteica , Dominios Proteicos , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Proteínas de Unión al GTP rap1/química , Proteínas de Unión al GTP rap1/genética
4.
Commun Biol ; 3(1): 445, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32796910

RESUMEN

Phospholipase Cε (PLCε) generates lipid-derived second messengers at the plasma and perinuclear membranes in the cardiovascular system. It is activated in response to a wide variety of signals, such as those conveyed by Rap1A and Ras, through a mechanism that involves its C-terminal Ras association (RA) domains (RA1 and RA2). However, the complexity and size of PLCε has hindered its structural and functional analysis. Herein, we report the 2.7 Å crystal structure of the minimal fragment of PLCε that retains basal activity. This structure includes the RA1 domain, which forms extensive interactions with other core domains. A conserved amphipathic helix in the autoregulatory X-Y linker of PLCε is also revealed, which we show modulates activity in vitro and in cells. The studies provide the structural framework for the core of this critical cardiovascular enzyme that will allow for a better understanding of its regulation and roles in disease.


Asunto(s)
Fosfoinositido Fosfolipasa C/química , Fosfoinositido Fosfolipasa C/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Animales , Cristalografía por Rayos X , Estabilidad de Enzimas , Modelos Biológicos , Mutación/genética , Dominios Proteicos , Estructura Secundaria de Proteína , Ratas , Temperatura de Transición
6.
Biochemistry ; 58(32): 3454-3467, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31322863

RESUMEN

Phospholipase Cß (PLCß) enzymes are peripheral membrane proteins required for normal cardiovascular function. PLCß hydrolyzes phosphatidylinositol 4,5-bisphosphate, producing second messengers that increase intracellular Ca2+ level and activate protein kinase C. Under basal conditions, PLCß is autoinhibited by its C-terminal domains and by the X-Y linker, which contains a stretch of conserved acidic residues required for interfacial activation. Following stimulation of G protein-coupled receptors, the heterotrimeric G protein subunit Gαq allosterically activates PLCß and helps orient the activated complex at the membrane for efficient lipid hydrolysis. However, the molecular basis for how the PLCß X-Y linker, its C-terminal domains, Gαq, and the membrane coordinately regulate activity is not well understood. Using compressed lipid monolayers and atomic force microscopy, we found that a highly conserved acidic region of the X-Y linker is sufficient to regulate adsorption. Regulation of adsorption and activity by the X-Y linker also occurs independently of the C-terminal domains. We next investigated whether Gαq-dependent activation of PLCß altered interactions with the model membrane. Gαq increased PLCß adsorption in a manner that was independent of the PLCß regulatory elements and targeted adsorption to specific regions of the monolayer in the absence of the C-terminal domains. Thus, the mechanism of Gαq-dependent activation likely includes a spatial component.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Lípidos/química , Fosfolipasa C beta/metabolismo , Adsorción , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/química , Modelos Moleculares , Fosfolipasa C beta/química , Unión Proteica , Conformación Proteica
7.
Anal Chem ; 91(13): 8466-8475, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31247720

RESUMEN

Intracellular pH plays a key role in physiology, and its measurement in living specimens remains a crucial task in biology. Fluorescent protein-based pH sensors have gained widespread use, but there is limited spectral diversity for multicolor detection, and it remains a challenge to measure absolute pH values. Here we demonstrate that mCherryTYG is an excellent fluorescence lifetime pH sensor that significantly expands the modalities available for pH quantification in live cells. We first report the 1.09 Å X-ray crystal structure of mCherryTYG, exhibiting a fully matured chromophore. We next determine that it has an extraordinarily large dynamic range with a 2 ns lifetime change from pH 5.5 to 9.0. Critically, we find that the sensor maintains a p Ka of 6.8 independent of environment, whether as the purified protein in solution or expressed in live cells. Furthermore, the lifetime measurements are robustly independent of total fluorescence intensity and scatter. We demonstrate that mCherryTYG is a highly effective sensor using time-resolved fluorescence spectroscopy on live-cell suspensions, which has been previously overlooked as an easily accessible approach for quantifying intracellular pH. As a red fluorescent sensor, we also demonstrate that mCherryTYG is spectrally compatible with the ATeam sensor and EGFP for simultaneous dual-color measurements of intracellular pH, ATP, and extracellular pH. In a proof-of-concept, we quantify acute respiration-dependent pH homeostasis that exhibits a stoichiometric relationship with the ATP-generating capacity of the carbon fuel choice in E. coli. Broadly speaking, our work presents a previously unemployed methodology that will greatly facilitate continuous pH quantification.


Asunto(s)
Técnicas Biosensibles/métodos , Respiración de la Célula , Escherichia coli/metabolismo , Fluorescencia , Proteínas Fluorescentes Verdes/metabolismo , Homeostasis , Espectrometría de Fluorescencia/métodos , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Concentración de Iones de Hidrógeno
8.
Cell Signal ; 62: 109349, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31254604

RESUMEN

Phospholipase Cß (PLCß) enzymes regulate second messenger production following the activation of G protein-coupled receptors (GPCRs). Under basal conditions, these enzymes are maintained in an autoinhibited state by multiple elements, including an insertion within the catalytic domain known as the X-Y linker. Although the PLCß X-Y linker is variable in sequence and length, its C-terminus is conserved and features an acidic stretch, followed by a short helix. This helix interacts with residues near the active site, acting as a lid to sterically prevent substrate binding. However, deletions that remove the acidic stretch of the X-Y linker increase basal activity to the same extent as deletion of the entire X-Y linker. Thus, the acidic stretch may be the linchpin in autoinhibition mediated by the X-Y linker. We used site-directed mutagenesis and biochemical assays to investigate the importance of this acidic charge in mediating PLCß3 autoinhibition. Loss of the acidic charge in the X-Y linker increases basal activity and decreases stability, consistent with loss of autoinhibition. However, introduction of compensatory electrostatic mutations on the surface of the PLCß3 catalytic domain restore activity to basal levels. Thus, intramolecular electrostatics modulate autoinhibition by the X-Y linker.


Asunto(s)
Dominio Catalítico/genética , Fosfolipasa C beta/genética , Conformación Proteica en Hélice alfa , Electricidad Estática , Humanos , Mutagénesis Sitio-Dirigida , Fosfolipasa C beta/antagonistas & inhibidores , Fosforilación , Receptores Acoplados a Proteínas G/genética
9.
J Biol Chem ; 294(20): 8148-8160, 2019 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-30940727

RESUMEN

Regulator of G protein signaling (RGS) proteins are negative regulators of G protein-coupled receptor (GPCR) signaling through their ability to act as GTPase-activating proteins (GAPs) for activated Gα subunits. Members of the RZ subfamily of RGS proteins bind to activated Gαo, Gαz, and Gαi1-3 proteins in the nervous system and thereby inhibit downstream pathways, including those involved in Ca2+-dependent signaling. In contrast to other RGS proteins, little is known about RZ subfamily structure and regulation. Herein, we present the 1.5-Å crystal structure of RGS17, the most complete and highest-resolution structure of an RZ subfamily member to date. RGS17 cocrystallized with Ca2+ bound to conserved positions on the predicted Gα-binding surface of the protein. Using NMR chemical shift perturbations, we confirmed that Ca2+ binds in solution to the same site. Furthermore, RGS17 had greater than 55-fold higher affinity for Ca2+ than for Mg2+ Finally, we found that Ca2+ promotes interactions between RGS17 and activated Gα and decreases the Km for GTP hydrolysis, potentially by altering the binding mechanism between these proteins. Taken together, these findings suggest that Ca2+ positively regulates RGS17, which may represent a general mechanism by which increased Ca2+ concentration promotes the GAP activity of the RZ subfamily, leading to RZ-mediated inhibition of Ca2+ signaling.


Asunto(s)
Señalización del Calcio , Calcio/química , Proteínas RGS/química , Calcio/metabolismo , Cristalografía por Rayos X , Subunidades alfa de la Proteína de Unión al GTP/genética , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Guanosina Trifosfato/química , Guanosina Trifosfato/genética , Guanosina Trifosfato/metabolismo , Humanos , Hidrólisis , Magnesio/química , Magnesio/metabolismo , Proteínas RGS/genética , Proteínas RGS/metabolismo
10.
J Biol Chem ; 293(45): 17477-17490, 2018 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-30242131

RESUMEN

Phospholipase C (PLC) enzymes produce second messengers that increase the intracellular Ca2+ concentration and activate protein kinase C (PKC). These enzymes also share a highly conserved arrangement of core domains. However, the contributions of the individual domains to regulation are poorly understood, particularly in isoforms lacking high-resolution information, such as PLCϵ. Here, we used small-angle X-ray scattering (SAXS), EM, and functional assays to gain insights into the molecular architecture of PLCϵ, revealing that its PH domain is conformationally dynamic and essential for activity. We further demonstrate that the PH domain of PLCß exhibits similar dynamics in solution that are substantially different from its conformation observed in multiple previously reported crystal structures. We propose that this conformational heterogeneity contributes to subfamily-specific differences in activity and regulation by extracellular signals.


Asunto(s)
Simulación de Dinámica Molecular , Dominios Homólogos a Pleckstrina , Fosfolipasas de Tipo C/química , Animales , Humanos , Mutación , Ratas , Fosfolipasas de Tipo C/genética , Fosfolipasas de Tipo C/metabolismo
11.
J Biol Chem ; 293(17): 6387-6397, 2018 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-29535186

RESUMEN

Phospholipase C (PLC) enzymes hydrolyze membrane phosphatidylinositol 4,5 bisphosphate (PIP2) and regulate Ca2+ and protein kinase signaling in virtually all mammalian cell types. Chronic activation of the PLCϵ isoform downstream of G protein-coupled receptors (GPCRs) contributes to the development of cardiac hypertrophy. We have previously shown that PLCϵ-catalyzed hydrolysis of Golgi-associated phosphatidylinositol 4-phosphate (PI4P) in cardiac myocytes depends on G protein ßγ subunits released upon stimulation with endothelin-1. PLCϵ binds and is directly activated by Ras family small GTPases, but whether they directly interact with Gßγ has not been demonstrated. To identify PLCϵ domains that interact with Gßγ, here we designed various single substitutions and truncations of WT PLCϵ and tested them for activation by Gßγ in transfected COS-7 cells. Deletion of only a single domain in PLCϵ was not sufficient to completely block its activation by Gßγ, but blocked activation by Ras. Simultaneous deletion of the C-terminal RA2 domain and the N-terminal CDC25 and cysteine-rich domains completely abrogated PLCϵ activation by Gßγ, but activation by the GTPase Rho was retained. In vitro reconstitution experiments further revealed that purified Gßγ directly interacts with a purified fragment of PLCϵ (PLCϵ-PH-RA2) and increases PIP2 hydrolysis. Deletion of the RA2 domain decreased Gßγ binding and eliminated Gßγ stimulation of PIP2 hydrolysis. These results provide first evidence that Gßγ directly interacts with PLCϵ and yield insights into the mechanism by which ßγ subunits activate PLCϵ.


Asunto(s)
Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Aparato de Golgi/enzimología , Miocitos Cardíacos/enzimología , Fosfoinositido Fosfolipasa C/metabolismo , Fosfatasas cdc25/metabolismo , Animales , Células COS , Chlorocebus aethiops , Endotelina-1/genética , Endotelina-1/metabolismo , Subunidades beta de la Proteína de Unión al GTP/genética , Subunidades gamma de la Proteína de Unión al GTP/genética , Aparato de Golgi/genética , Miocitos Cardíacos/citología , Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/metabolismo , Fosfoinositido Fosfolipasa C/genética , Dominios Proteicos , Ratas , Fosfatasas cdc25/genética , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo
12.
Biochemistry ; 56(41): 5604-5614, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-28945350

RESUMEN

Phospholipase Cß (PLCß) enzymes hydrolyze phosphatidylinositol 4,5-bisphosphate to produce second messengers that regulate intracellular Ca2+, cell proliferation, and survival. Their activity is dependent upon interfacial activation that occurs upon localization to cell membranes. However, the molecular basis for how these enzymes productively interact with the membrane is poorly understood. Herein, atomic force microscopy demonstrates that the ∼300-residue C-terminal domain promotes adsorption to monolayers and is required for spatial organization of the protein on the monolayer surface. PLCß variants lacking this C-terminal domain display differences in their distribution on the surface. In addition, a previously identified autoinhibitory helix that binds to the PLCß catalytic core negatively impacts membrane binding, providing an additional level of regulation for membrane adsorption. Lastly, defects in phosphatidylinositol 4,5-bisphosphate hydrolysis also alter monolayer adsorption, reflecting a role for the active site in this process. Together, these findings support a model in which multiple elements of PLCß modulate adsorption, distribution, and catalysis at the cell membrane.


Asunto(s)
Membrana Dobles de Lípidos/metabolismo , Modelos Moleculares , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfolipasa C beta/metabolismo , Adsorción , Sustitución de Aminoácidos , Dominio Catalítico , Activación Enzimática , Estabilidad de Enzimas , Fluorometría , Eliminación de Gen , Humanos , Hidrólisis , Membrana Dobles de Lípidos/química , Liposomas , Microscopía de Fuerza Atómica , Mutagénesis Sitio-Dirigida , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Fosfatidilinositol 4,5-Difosfato/química , Fosfolipasa C beta/química , Fosfolipasa C beta/genética , Mutación Puntual , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo
13.
Structure ; 22(12): 1844-1854, 2014 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-25435326

RESUMEN

Phospholipase C ß (PLCß) enzymes are dramatically activated by heterotrimeric G proteins. Central to this response is the robust autoinhibition of PLCß by the X-Y linker region within its catalytic core and by the Hα2' helix in the C-terminal extension of the enzyme. The molecular mechanism of each and their mutual dependence are poorly understood. Herein, it is shown that distinct regions within the X-Y linker have specific roles in regulating activity. Most important,an acidic stretch within the linker stabilizes a lid that occludes the active site, consistent with crystal structures of variants lacking this region. Inhibition by the Hα2' helix is independent of the X-Y linker and likely regulates activity by limiting membrane interaction of the catalytic core. Full activation of PLCß thus requires multiple independent molecular events induced by membrane association of the catalytic core and by the binding of regulatory proteins.


Asunto(s)
Modelos Moleculares , Fosfolipasa C beta/metabolismo , Cristalografía por Rayos X , Humanos , Unión Proteica , Conformación Proteica
14.
Trends Pharmacol Sci ; 35(1): 23-30, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24287282

RESUMEN

The heterotrimeric G protein Gαq is a central player in signal transduction, relaying signals from activated G-protein-coupled receptors (GPCRs) to effectors and other proteins to elicit changes in intracellular Ca(2+), the actin cytoskeleton, and gene transcription. Gαq functions at the intracellular surface of the plasma membrane, as do its best-characterized targets, phospholipase C-ß, p63RhoGEF, and GPCR kinase 2 (GRK2). Recent insights into the structure and function of these signaling complexes reveal several recurring themes, including complex multivalent interactions between Gαq, its protein target, and the membrane, that are likely essential for allosteric control and maximum efficiency in signal transduction. Thus, the plasma membrane is not only a source of substrates but also a key player in the scaffolding of Gαq-dependent signaling pathways.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gq-G11/química , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Humanos , Modelos Moleculares , Transducción de Señal , Relación Estructura-Actividad
15.
Mol Pharmacol ; 84(4): 488-500, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23880553

RESUMEN

Phospholipase C (PLC) enzymes convert phosphatidylinositol-4,5-bisphosphate into the second messengers diacylglycerol and inositol-1,4,5-triphosphate. The production of these molecules promotes the release of intracellular calcium and activation of protein kinase C, which results in profound cellular changes. The PLCß subfamily is of particular interest given its prominent role in cardiovascular and neuronal signaling and its regulation by G protein-coupled receptors, as PLCß is the canonical downstream target of the heterotrimeric G protein Gαq. However, this is not the only mechanism regulating PLCß activity. Extensive structural and biochemical evidence has revealed regulatory roles for autoinhibitory elements within PLCß, Gßγ, small molecular weight G proteins, and the lipid membrane itself. Such complex regulation highlights the central role that this enzyme plays in cell signaling. A better understanding of the molecular mechanisms underlying the control of its activity will greatly facilitate the search for selective small molecule modulators of PLCß.


Asunto(s)
Fosfolipasa C beta/química , Fosfolipasa C beta/fisiología , Animales , Humanos , Isoenzimas/química , Isoenzimas/fisiología , Isoformas de Proteínas/química , Isoformas de Proteínas/fisiología
16.
Nat Struct Mol Biol ; 20(3): 355-62, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23377541

RESUMEN

Phospholipase C-ß (PLCß) is directly activated by Gαq, but the molecular basis for how its distal C-terminal domain (CTD) contributes to maximal activity is poorly understood. Herein we present both the crystal structure and cryo-EM three-dimensional reconstructions of human full-length PLCß3 in complex with mouse Gαq. The distal CTD forms an extended monomeric helical bundle consisting of three antiparallel segments with structural similarity to membrane-binding bin-amphiphysin-Rvs (BAR) domains. Sequence conservation of the distal CTD suggests putative membrane and protein interaction sites, the latter of which bind the N-terminal helix of Gαq in both the crystal structure and cryo-EM reconstructions. Functional analysis suggests that the distal CTD has roles in membrane targeting and in optimizing the orientation of the catalytic core at the membrane for maximal rates of lipid hydrolysis.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gq-G11/química , Fosfolipasa C beta/química , Animales , Dominio Catalítico , Microscopía por Crioelectrón , Cristalografía por Rayos X , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Humanos , Ratones , Modelos Moleculares , Fosfolipasa C beta/metabolismo , Conformación Proteica , Estructura Terciaria de Proteína
17.
Nat Struct Mol Biol ; 18(9): 999-1005, 2011 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-21822282

RESUMEN

The enzyme phospholipase C-ß (PLCß) is a crucial regulator of intracellular calcium levels whose activity is controlled by heptahelical receptors that couple to members of the Gq family of heterotrimeric G proteins. We have determined atomic structures of two invertebrate homologs of PLCß (PLC21) from cephalopod retina and identified a helix from the C-terminal regulatory region that interacts with a conserved surface of the catalytic core of the enzyme. Mutations designed to disrupt the analogous interaction in human PLCß3 considerably increase basal activity and diminish stimulation by Gαq. Gαq binding requires displacement of the autoinhibitory helix from the catalytic core, thus providing an allosteric mechanism for activation of PLCß.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Loligo/enzimología , Fosfolipasa C beta/química , Sepia/enzimología , Animales , Cristalografía por Rayos X , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Fosfolipasa C beta/fisiología , Estructura Secundaria de Proteína/fisiología , Estructura Terciaria de Proteína
18.
Biochemistry ; 48(51): 12202-12, 2009 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-19919093

RESUMEN

The RNA recognition motif (or RRM) is a ubiquitous RNA-binding module present in approximately 2% of the proteins encoded in the human genome. This work characterizes an expanded RRM, which is present in the Drosophila Bruno protein, and targets regulatory elements in the oskar mRNA through which Bruno controls translation. In this Bruno RRM, the deletion of 40 amino acids prior to the N-terminus of the canonical RRM resulted in a significantly decreased affinity of the protein for its RNA target. NMR spectroscopy showed that the expanded Bruno RRM contains the familiar RRM fold of four antiparallel beta-strands and two alpha-helices, preceded by a 10-residue loop that contacts helix alpha(1) and strand beta(2); additional amino acids at the N-terminus of the domain are relatively flexible in solution. NMR results also showed that a truncated form of the Bruno RRM, lacking the flexible N-terminal amino acids, forms a stable and complete canonical RRM, so that the loss of RNA binding activity cannot be attributed to disruption of the RRM fold. This expanded Bruno RRM provides a new example of the features that are important for RNA recognition by an RRM-containing protein.


Asunto(s)
Proteínas de Drosophila/química , Drosophila/química , Proteínas de Unión al ARN/química , ARN/química , Secuencia de Aminoácidos , Animales , Perros , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Humanos , Datos de Secuencia Molecular , Unión Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , ARN/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Alineación de Secuencia , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...