Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Syst ; 14(11): 953-967.e17, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37944515

RESUMEN

Methylation of CG dinucleotides (mCGs), which regulates eukaryotic genome functions, is epigenetically propagated by Dnmt1/MET1 methyltransferases. How mCG is established and transmitted across generations despite imperfect enzyme fidelity is unclear. Whether mCG variation in natural populations is governed by genetic or epigenetic inheritance also remains mysterious. Here, we show that MET1 de novo activity, which is enhanced by existing proximate methylation, seeds and stabilizes mCG in Arabidopsis thaliana genes. MET1 activity is restricted by active demethylation and suppressed by histone variant H2A.Z, producing localized mCG patterns. Based on these observations, we develop a stochastic mathematical model that precisely recapitulates mCG inheritance dynamics and predicts intragenic mCG patterns and their population-scale variation given only CG site spacing. Our results demonstrate that intragenic mCG establishment, inheritance, and variance constitute a unified epigenetic process, revealing that intragenic mCG undergoes large, millennia-long epigenetic fluctuations and can therefore mediate evolution on this timescale.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Metilación de ADN/genética , Proteínas de Arabidopsis/genética , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Epigénesis Genética/genética , Histonas/metabolismo
2.
Cell Rep ; 42(3): 112132, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36827183

RESUMEN

Cytosine methylation within CG dinucleotides (mCG) can be epigenetically inherited over many generations. Such inheritance is thought to be mediated by a semiconservative mechanism that produces binary present/absent methylation patterns. However, we show here that, in Arabidopsis thaliana h1ddm1 mutants, intermediate heterochromatic mCG is stably inherited across many generations and is quantitatively associated with transposon expression. We develop a mathematical model that estimates the rates of semiconservative maintenance failure and de novo methylation at each transposon, demonstrating that mCG can be stably inherited at any level via a dynamic balance of these activities. We find that DRM2-the core methyltransferase of the RNA-directed DNA methylation pathway-catalyzes most of the heterochromatic de novo mCG, with de novo rates orders of magnitude higher than previously thought, whereas chromomethylases make smaller contributions. Our results demonstrate that stable epigenetic inheritance of mCG in plant heterochromatin is enabled by extensive de novo methylation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Histonas/metabolismo , Metilación de ADN/genética , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas
3.
Elife ; 102021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34850679

RESUMEN

Flowering plants utilize small RNA (sRNA) molecules to guide DNA methyltransferases to genomic sequences. This RNA-directed DNA methylation (RdDM) pathway preferentially targets euchromatic transposable elements. However, RdDM is thought to be recruited by methylation of histone H3 at lysine 9 (H3K9me), a hallmark of heterochromatin. How RdDM is targeted to euchromatin despite an affinity for H3K9me is unclear. Here, we show that loss of histone H1 enhances heterochromatic RdDM, preferentially at nucleosome linker DNA. Surprisingly, this does not require SHH1, the RdDM component that binds H3K9me. Furthermore, H3K9me is dispensable for RdDM, as is CG DNA methylation. Instead, we find that non-CG methylation is specifically associated with sRNA biogenesis, and without H1 sRNA production quantitatively expands to non-CG-methylated loci. Our results demonstrate that H1 enforces the separation of euchromatic and heterochromatic DNA methylation pathways by excluding the sRNA-generating branch of RdDM from non-CG-methylated heterochromatin.


Cells adapt to different roles by turning different groups of genes on and off. One way cells control which genes are on or off is by creating regions of active and inactive DNA, which are created and maintained by different groups of proteins. Genes in active DNA regions can be turned on, while genes in inactive regions are switched off or silenced. Silenced DNA regions also turn off 'transposable elements': pieces of DNA that can copy themselves and move to other regions of the genome if they become active. Transposons can be dangerous if they are activated, because they can disrupt genes or regulatory sequences when they move. There are different types of active and inactive DNA, but it is not always clear why these differences exist, or how they are maintained over time. In plants, such as the commonly-studied weed Arabidopsis thaliana, there are two types of inactive DNA, called E and H, that can silence transposons. In both types, DNA has small chemicals called methyl groups attached to it, which help inactivate the DNA. Type E DNA is methylated by a process called RNA-directed DNA methylation (RdDM), but RdDM is rarely seen in type H DNA. Choi, Lyons and Zilberman showed that RdDM is attracted to E and H regions by previously existing methylated DNA. However, in the H regions, a protein called histone H1 blocks RdDM from attaching methyl groups. This helps focus RdDM onto E regions where it is most needed, because E regions contain the types of transposons RdDM is best suited to silence. When Choi, Lyons and Zilberman examined genetically modified A. thaliana plants that do not produce histone H1, they found that RdDM happened in both E and H regions. There are many more H regions than E regions, so stretching RdDM across both made it less effective at silencing DNA. This work shows how different DNA silencing processes are focused onto specific genetic regions, helping explain why there are different types of active and inactive DNA within cells. RdDM has been studied as a way to affect crop growth and yield by altering DNA methylation. These results may help such studies by explaining how RdDM is naturally targeted.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Metilación de ADN , Regulación de la Expresión Génica de las Plantas , Heterocromatina/metabolismo , Histonas/genética , ARN Pequeño no Traducido/metabolismo , Proteínas de Arabidopsis/genética , Heterocromatina/genética , Histonas/metabolismo , ARN Pequeño no Traducido/genética
4.
Mol Cell ; 77(2): 310-323.e7, 2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31732458

RESUMEN

DNA methylation and histone H1 mediate transcriptional silencing of genes and transposable elements, but how they interact is unclear. In plants and animals with mosaic genomic methylation, functionally mysterious methylation is also common within constitutively active housekeeping genes. Here, we show that H1 is enriched in methylated sequences, including genes, of Arabidopsis thaliana, yet this enrichment is independent of DNA methylation. Loss of H1 disperses heterochromatin, globally alters nucleosome organization, and activates H1-bound genes, but only weakly de-represses transposable elements. However, H1 loss strongly activates transposable elements hypomethylated through mutation of DNA methyltransferase MET1. Hypomethylation of genes also activates antisense transcription, which is modestly enhanced by H1 loss. Our results demonstrate that H1 and DNA methylation jointly maintain transcriptional homeostasis by silencing transposable elements and aberrant intragenic transcripts. Such functionality plausibly explains why DNA methylation, a well-known mutagen, has been maintained within coding sequences of crucial plant and animal genes.


Asunto(s)
Proteínas de Arabidopsis/genética , Metilación de ADN/genética , Elementos Transponibles de ADN/genética , Histonas/genética , Arabidopsis/genética , ADN (Citosina-5-)-Metiltransferasas/genética , Epigénesis Genética/genética , Regulación de la Expresión Génica de las Plantas/genética , Silenciador del Gen/fisiología , Heterocromatina/genética , Mutación/genética , Transcripción Genética/genética
5.
Elife ; 62017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-29140247

RESUMEN

Cytosine methylation regulates essential genome functions across eukaryotes, but the fundamental question of whether nucleosomal or naked DNA is the preferred substrate of plant and animal methyltransferases remains unresolved. Here, we show that genetic inactivation of a single DDM1/Lsh family nucleosome remodeler biases methylation toward inter-nucleosomal linker DNA in Arabidopsis thaliana and mouse. We find that DDM1 enables methylation of DNA bound to the nucleosome, suggesting that nucleosome-free DNA is the preferred substrate of eukaryotic methyltransferases in vivo. Furthermore, we show that simultaneous mutation of DDM1 and linker histone H1 in Arabidopsis reproduces the strong linker-specific methylation patterns of species that diverged from flowering plants and animals over a billion years ago. Our results indicate that in the absence of remodeling, nucleosomes are strong barriers to DNA methyltransferases. Linker-specific methylation can evolve simply by breaking the connection between nucleosome remodeling and DNA methylation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , ADN Helicasas/metabolismo , Metilación de ADN , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Nucleosomas/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas de Arabidopsis/genética , ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Ratones , Factores de Transcripción/genética
6.
Cell Rep ; 9(3): 884-92, 2014 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-25437545

RESUMEN

An astounding property of the nervous system is its cellular diversity. This diversity, which was initially realized by morphological and electrophysiological differences, is ultimately produced by variations in gene-expression programs. In most cases, these variations are determined by external cues. However, a growing number of neuronal types have been identified in which inductive signals cannot explain the few but decisive transcriptional differences that cause cell diversification. Here, we show that heterochromatic silencing, which we find is governed by histone methyltransferases G9a (KMT1C) and GLP (KMT1D), is essential for stochastic and singular olfactory receptor (OR) expression. Deletion of G9a and GLP dramatically reduces the complexity of the OR transcriptome, resulting in transcriptional domination by a few ORs and loss of singularity in OR expression. Thus, our data suggest that, in addition to its previously known functions, heterochromatin creates an epigenetic platform that affords stochastic, mutually exclusive gene choices and promotes cellular diversity.


Asunto(s)
Silenciador del Gen , Heterocromatina/metabolismo , Neuronas Receptoras Olfatorias/metabolismo , Animales , Eliminación de Gen , Histona Demetilasas , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Metilación , Ratones , Neuronas Receptoras Olfatorias/citología , Oxidorreductasas N-Desmetilantes/metabolismo
7.
Biochim Biophys Acta ; 1839(12): 1373-84, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24859457

RESUMEN

Transcriptionally repressive histone lysine methylation is used by eukaryotes to tightly control cell fate. Here we explore the importance of this form of regulation in the control of clustered genes in the genome. Two distinctly regulated gene families with important roles in vertebrates are discussed, namely the Hox genes and olfactory receptor genes. Major recent advances in these two fields are compared and contrasted, with an emphasis on the roles of the two different forms of histone trimethylation. We discuss how this repression may impact both the transcriptional output of these loci and the way higher-order chromatin organization is related to their unique control.


Asunto(s)
Regulación de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Proteínas Represoras/metabolismo , Transcripción Genética/genética , Animales , Regulación hacia Abajo , Determinismo Genético , Histona Metiltransferasas , Humanos , Metilación , Procesamiento Proteico-Postraduccional , Procesos Estocásticos
8.
Cell ; 155(2): 321-32, 2013 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-24120133

RESUMEN

Olfactory receptor (OR) expression requires the transcriptional activation of 1 out of 1,000s of OR alleles and a feedback signal that preserves this transcriptional choice. The mechanism by which olfactory sensory neurons (OSNs) detect ORs to signal to the nucleus remains elusive. Here, we show that OR proteins generate this feedback by activating the unfolded protein response (UPR). OR expression induces Perk-mediated phosphorylation of the translation initiation factor eif2α causing selective translation of activating transcription factor 5 (ATF5). ATF5 induces the transcription of adenylyl cyclase 3 (Adcy3), which relieves the UPR. Our data provide a role for the UPR in defining neuronal identity and cell fate commitment and support a two-step model for the feedback signal: (1) OR protein, as a stress stimulus, alters the translational landscape of the OSN and induces Adcy3 expression; (2), Adcy3 relieves that stress, restores global translation, and makes OR choice permanent.


Asunto(s)
Retroalimentación Fisiológica , Neuronas/metabolismo , Receptores Odorantes/metabolismo , Respuesta de Proteína Desplegada , Factores de Transcripción Activadores/genética , Factores de Transcripción Activadores/metabolismo , Adenilil Ciclasas/metabolismo , Animales , Retículo Endoplásmico/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Ratones , Ratones Noqueados , Neuronas/citología , Neuronas Receptoras Olfatorias/metabolismo , Receptores Odorantes/genética , eIF-2 Quinasa/metabolismo
9.
Cell ; 154(2): 325-36, 2013 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-23870122

RESUMEN

The molecular mechanisms regulating olfactory receptor (OR) expression in the mammalian nose are not yet understood. Here, we identify the transient expression of histone demethylase LSD1 and the OR-dependent expression of adenylyl cyclase 3 (Adcy3) as requirements for initiation and stabilization of OR expression. As a transcriptional coactivator, LSD1 is necessary for desilencing and initiating OR transcription, but as a transcriptional corepressor, it is incompatible with maintenance of OR expression, and its downregulation is imperative for stable OR choice. Adcy3, a sensor of OR expression and a transmitter of an OR-elicited feedback, mediates the downregulation of LSD1 and promotes the differentiation of olfactory sensory neurons (OSNs). This novel, three-node signaling cascade locks the epigenetic state of the chosen OR, stabilizes its singular expression, and prevents the transcriptional activation of additional OR alleles for the life of the neuron.


Asunto(s)
Adenilil Ciclasas/metabolismo , Epigénesis Genética , Regulación de la Expresión Génica , Oxidorreductasas N-Desmetilantes/metabolismo , Receptores Odorantes/genética , Células Receptoras Sensoriales/metabolismo , Animales , Regulación hacia Abajo , Histona Demetilasas , Ratones , Ratones Noqueados , Mucosa Nasal/metabolismo , Neuronas Receptoras Olfatorias/metabolismo
10.
Evol Dev ; 15(2): 107-18, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-25098636

RESUMEN

Teeth with two or more cusps have arisen independently from an ancestral unicuspid condition in a variety of vertebrate lineages, including sharks, teleost fishes, amphibians, lizards, and mammals. One potential explanation for the repeated origins of multicuspid teeth is the existence of multiple adaptive pathways leading to them, as suggested by their different uses in these lineages. Another is that the addition of cusps required only minor changes in genetic pathways regulating tooth development. Here we provide support for the latter hypothesis by demonstrating that manipulation of the levels of Fibroblast growth factor (Fgf) or Bone morphogenetic protein (Bmp) signaling produces bicuspid teeth in the zebrafish (Danio rerio), a species lacking multicuspid teeth in its ancestry. The generality of these results for teleosts is suggested by the conversion of unicuspid pharyngeal teeth into bicuspid teeth by similar manipulations of the Mexican Tetra (Astyanax mexicanus). That these manipulations also produced supernumerary teeth in both species supports previous suggestions of similarities in the molecular control of tooth and cusp number. We conclude that despite their apparent complexity, the evolutionary origin of multicuspid teeth is positively constrained, likely requiring only slight modifications of a pre-existing mechanism for patterning the number and spacing of individual teeth.


Asunto(s)
Evolución Molecular , Peces/metabolismo , Transducción de Señal , Diente/fisiología , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Characidae/genética , Characidae/crecimiento & desarrollo , Characidae/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Peces/clasificación , Peces/genética , Pirazoles/farmacología , Pirimidinas/farmacología , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo
11.
Development ; 138(18): 4063-73, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21862563

RESUMEN

Much of our knowledge about mammalian evolution comes from examination of dental fossils, because the highly calcified enamel that covers teeth causes them to be among the best-preserved organs. As mammals entered new ecological niches, many changes in tooth number occurred, presumably as adaptations to new diets. For example, in contrast to humans, who have two incisors in each dental quadrant, rodents only have one incisor per quadrant. The rodent incisor, because of its unusual morphogenesis and remarkable stem cell-based continuous growth, presents a quandary for evolutionary biologists, as its origin in the fossil record is difficult to trace, and the genetic regulation of incisor number remains a largely open question. Here, we studied a series of mice carrying mutations in sprouty genes, the protein products of which are antagonists of receptor-tyrosine kinase signaling. In sprouty loss-of-function mutants, splitting of gene expression domains and reduced apoptosis was associated with subdivision of the incisor primordium and a multiplication of its stem cell-containing regions. Interestingly, changes in sprouty gene dosage led to a graded change in incisor number, with progressive decreases in sprouty dosage leading to increasing numbers of teeth. Moreover, the independent development of two incisors in mutants with large decreases in sprouty dosage mimicked the likely condition of rodent ancestors. Together, our findings indicate that altering genetic dosage of an antagonist can recapitulate ancestral dental characters, and that tooth number can be progressively regulated by changing levels of activity of a single signal transduction pathway.


Asunto(s)
Proteínas Tirosina Quinasas Receptoras/fisiología , Diente/embriología , Proteínas Adaptadoras Transductoras de Señales , Animales , Embrión de Mamíferos , Femenino , Dosificación de Gen/fisiología , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Transgénicos , Modelos Biológicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/fisiología , Odontogénesis/genética , Odontogénesis/fisiología , Embarazo , Proteínas Serina-Treonina Quinasas , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Diente/anatomía & histología , Diente/metabolismo , Diente Supernumerario/genética
12.
J Exp Zool B Mol Dev Evol ; 312B(5): 473-85, 2009 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-19101957

RESUMEN

The mouse incisor has two unusual features: it grows continuously and it is covered by enamel exclusively on the labial side. The continuous growth is driven in part by epithelial stem cells in the cervical loop region that can both self-renew and give rise to ameloblasts. We have previously reported that ectopic enamel is found on the lingual side of the incisor in mice with loss-of-function of sprouty (spry) genes. Spry2(+/-); Spry4(-/-) mice, in which three sprouty alleles have been inactivated, have ectopic enamel as a result of upregulation of epithelial-mesenchymal FGF signaling in the lingual part of the cervical loop. Interestingly, lingual enamel is also present in the early postnatal period in Spry4(-/-) mice, in which only two sprouty alleles have been inactivated, but ectopic enamel is not found in adults of this genotype. To explore the mechanisms underlying the disappearance of lingual enamel in Spry4(-/-) adults, we studied the fate of the lingual enamel in Spry4(-/-) mice by comparing the morphology and growth of their lower incisors with wild type and Spry2(+/-); Spry4(-/-) mice at several timepoints between the perinatal period and adulthood. Ameloblasts and enamel were detected on the lingual side in postnatal Spry2(+/-); Spry4(+/-) incisors. By contrast, new ectopic ameloblasts ceased to differentiate after postnatal day 3 in Spry4(-/-) incisors, which was followed by a progressive loss of lingual enamel. Both the posterior extent of lingual enamel and the time of its last deposition were variable early postnatally in Spry4(-/-) incisors, but in all Spry4(-/-) adult incisors the lingual enamel was ultimately lost through continuous growth and abrasion of the incisor.


Asunto(s)
Esmalte Dental/embriología , Esmalte Dental/crecimiento & desarrollo , Incisivo/crecimiento & desarrollo , Ratones Mutantes/genética , Proteínas del Tejido Nervioso/deficiencia , Proteínas Adaptadoras Transductoras de Señales , Ameloblastos/citología , Ameloblastos/fisiología , Animales , Desarrollo Embrionario , Genotipo , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Mucosa Bucal/citología , Mucosa Bucal/fisiología , Proteínas Serina-Treonina Quinasas
13.
Development ; 135(2): 377-85, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18077585

RESUMEN

Rodent incisors grow throughout adult life, but are prevented from becoming excessively long by constant abrasion, which is facilitated by the absence of enamel on one side of the incisor. Here we report that loss-of-function of sprouty genes, which encode antagonists of receptor tyrosine kinase signaling, leads to bilateral enamel deposition, thus impeding incisor abrasion and resulting in unchecked tooth elongation. We demonstrate that sprouty genes function to ensure that enamel-producing ameloblasts are generated on only one side of the tooth by inhibiting the formation of ectopic ameloblasts from self-renewing stem cells, and that they do so by preventing the establishment of an epithelial-mesenchymal FGF signaling loop. Interestingly, although inactivation of Spry4 alone initiates ectopic ameloblast formation in the embryo, the dosage of another sprouty gene must also be reduced to sustain it after birth. These data reveal that the generation of differentiated progeny from a particular stem cell population can be differently regulated in the embryo and adult.


Asunto(s)
Diferenciación Celular , Factores de Crecimiento de Fibroblastos/metabolismo , Incisivo/citología , Incisivo/embriología , Transducción de Señal , Células Madre/citología , Proteínas Adaptadoras Transductoras de Señales , Ameloblastos/citología , Ameloblastos/metabolismo , Animales , Proliferación Celular , Esmalte Dental/citología , Esmalte Dental/embriología , Esmalte Dental/metabolismo , Epitelio/embriología , Epitelio/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Dosificación de Gen , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/metabolismo , Incisivo/anomalías , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mesodermo/citología , Mesodermo/embriología , Mesodermo/metabolismo , Ratones , Modelos Biológicos , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Especificidad de Órganos , Fenotipo , Proteínas Serina-Treonina Quinasas , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...