Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Chem Theory Comput ; 19(15): 5151-5167, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37347981

RESUMEN

We present an atomic cluster expansion (ACE) for carbon that improves over available classical and machine learning potentials. The ACE is parametrized from an exhaustive set of important carbon structures over extended volume and energy ranges, computed using density functional theory (DFT). Rigorous validation reveals that ACE accurately predicts a broad range of properties of both crystalline and amorphous carbon phases while being several orders of magnitude more computationally efficient than available machine learning models. We demonstrate the predictive power of ACE on three distinct applications: brittle crack propagation in diamond, the evolution of amorphous carbon structures at different densities and quench rates, and the nucleation and growth of fullerene clusters under high-pressure and high-temperature conditions.

2.
Nat Comput Sci ; 1(4): 290-297, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38217168

RESUMEN

The discovery of new structural and functional materials is driven by phase identification, often using X-ray diffraction (XRD). Automation has accelerated the rate of XRD measurements, greatly outpacing XRD analysis techniques that remain manual, time-consuming, error-prone and impossible to scale. With the advent of autonomous robotic scientists or self-driving laboratories, contemporary techniques prohibit the integration of XRD. Here, we describe a computer program for the autonomous characterization of XRD data, driven by artificial intelligence (AI), for the discovery of new materials. Starting from structural databases, we train an ensemble model using a physically accurate synthetic dataset, which outputs probabilistic classifications-rather than absolutes-to overcome the overconfidence in traditional neural networks. This AI agent behaves as a companion to the researcher, improving accuracy and offering substantial time savings. It is demonstrated on a diverse set of organic and inorganic materials characterization challenges. This method is directly applicable to inverse design approaches and robotic discovery systems, and can be immediately considered for other forms of characterization such as spectroscopy and the pair distribution function.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA