Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanotechnology ; 34(41)2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37490587

RESUMEN

The effect of defects, nitrogen doping, and hydrogen saturation on the work function of graphene is investigated via first principle calculations. Whilst Stone-Wales defects have little effect, single and double vacancy defects increase the work function by decreasing charge density in theπ-electron system. Substitutional nitrogen doping in defect-free graphene significantly decreases the work function, because the nitrogen atoms donate electrons to theπ-electron system. In the presence of defects, these competing effects mean that higher nitrogen content is required to achieve similar reduction in work function as for crystalline graphene. Doping with pyridinic nitrogen atoms at vacancies slightly increases the work function, since pyridinic nitrogen does not contribute electrons to theπ-electron system. Meanwhile, hydrogen saturation of the pyridinic nitrogen atoms significantly reduces the work function, due to a shift from pyridinic to graphitic-type behavior. These findings clearly explain some of the experimental work functions obtained for carbon and nitrogen-doped carbon materials in the literature, and has implications in applications such as photocatalysis, photovoltaics, electrochemistry, and electron field emission.

2.
Membranes (Basel) ; 12(7)2022 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-35877861

RESUMEN

Nanocellulose is a sustainable material which holds promise for many energy-related applications. Here, nanocrystalline cellulose is used to prepare proton exchange membranes (PEMs). Normally, this nanomaterial is highly dispersible in water, preventing its use as an ionomer in many electrochemical applications. To solve this, we utilized a sulfonic acid crosslinker to simultaneously improve the mechanical robustness, water-stability, and proton conductivity (by introducing -SO3-H+ functional groups). The optimization of the proportion of crosslinker used and the crosslinking reaction time resulted in enhanced proton conductivity up to 15 mS/cm (in the fully hydrated state, at 120 °C). Considering the many advantages, we believe that nanocellulose can act as a sustainable and low-cost alternative to conventional, ecologically problematic, perfluorosulfonic acid ionomers for applications in, e. fuel cells and electrolyzers.

3.
Nanotechnology ; 31(22): 225401, 2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32066126

RESUMEN

Non-platinum group metal (non-PGM) catalysts for the oxygen reduction reaction (ORR) are set to reduce the cost of polymer electrolyte membrane fuel cells (PEFCs) by replacing platinum at the cathode. We previously developed unique nitrogen-doped carbon foams by template-free pyrolysis of alkoxide powders synthesized using a high temperature and high pressure solvothermal reaction. These were shown to be effective ORR electrocatalysts in alkaline media. Here, we present a new optimised synthesis protocol which is carried out at ambient temperature and pressure, enabling us to safely increase the batch size to 2 g, increase the yield by 60%, increase the specific surface area to 1866 m2 g-1, and control the nitrogen content (between 1.0 and 5.2 at%). These optimized nitrogen-doped carbon foams are then utilized as effective supports for Fe-N-C catalysts for the ORR in acid media, whilst multiphysics modelling is used to gain insight into the electrochemical performance. This work highlights the importance of the properties of the carbon support in the design of Pt-free electrocatalysts.

4.
Nat Commun ; 8(1): 957, 2017 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-29038426

RESUMEN

Single-atom catalysts with full utilization of metal centers can bridge the gap between molecular and solid-state catalysis. Metal-nitrogen-carbon materials prepared via pyrolysis are promising single-atom catalysts but often also comprise metallic particles. Here, we pyrolytically synthesize a Co-N-C material only comprising atomically dispersed cobalt ions and identify with X-ray absorption spectroscopy, magnetic susceptibility measurements and density functional theory the structure and electronic state of three porphyrinic moieties, CoN4C12, CoN3C10,porp and CoN2C5. The O2 electro-reduction and operando X-ray absorption response are measured in acidic medium on Co-N-C and compared to those of a Fe-N-C catalyst prepared similarly. We show that cobalt moieties are unmodified from 0.0 to 1.0 V versus a reversible hydrogen electrode, while Fe-based moieties experience structural and electronic-state changes. On the basis of density functional theory analysis and established relationships between redox potential and O2-adsorption strength, we conclude that cobalt-based moieties bind O2 too weakly for efficient O2 reduction.Nitrogen-doped carbon materials with atomically dispersed iron or cobalt are promising for catalytic use. Here, the authors show that cobalt moieties have a higher redox potential, bind oxygen more weakly and are less active toward oxygen reduction than their iron counterpart, despite similar coordination.

5.
ChemSusChem ; 10(6): 1094-1099, 2017 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-27791338

RESUMEN

We report characterization of a non-precious metal-free catalyst for the electrochemical reduction of CO2 to CO; namely, a pyrolyzed carbon nitride and multiwall carbon nanotube composite. This catalyst exhibits a high selectivity for production of CO over H2 (approximately 98 % CO and 2 % H2 ), as well as high activity in an electrochemical flow cell. The CO partial current density at intermediate cathode potentials (V=-1.46 V vs. Ag/AgCl) is up to 3.5× higher than state-of-the-art Ag nanoparticle-based catalysts, and the maximum current density is 90 mA cm-2 . The mass activity and energy efficiency (up to 48 %) were also higher than the Ag nanoparticle reference. Moving away from precious metal catalysts without sacrificing activity or selectivity may significantly enhance the prospects of electrochemical CO2 reduction as an approach to reduce atmospheric CO2 emissions or as a method for load-leveling in relation to the use of intermittent renewable energy sources.


Asunto(s)
Dióxido de Carbono/química , Monóxido de Carbono/química , Carbono/química , Conductividad Eléctrica , Nanotubos de Carbono/química , Nitrógeno/química , Catálisis , Electroquímica , Electrodos , Modelos Moleculares , Conformación Molecular , Nanocompuestos/química , Nitrilos/química , Oxidación-Reducción
9.
ACS Appl Mater Interfaces ; 8(40): 27179-27187, 2016 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-27636510

RESUMEN

Friction and wear decrease the efficiency and lifetimes of mechanical devices. Solving this problem will potentially lead to a significant reduction in global energy consumption. We show that multilayer polyethylenimine/graphene oxide thin films, prepared via a highly scalable layer-by-layer (LbL) deposition technique, can be used as solid lubricants. The tribological properties are investigated in air, under vacuum, in hydrogen, and in nitrogen gas environments. In all cases the coefficient of friction (COF) significantly decreased after application of the coating, and the wear life was enhanced by increasing the film thickness. The COF was lower in dry environments than in more humid environments, in contrast to traditional graphite and diamond-like carbon films. Superlubricity (COF < 0.01) was achieved for the thickest films in dry N2. Microstructural analysis of the wear debris revealed that carbon nanoparticles were formed exclusively in dry conditions (i.e., N2, vacuum), and it is postulated that these act as rolling asperities, decreasing the contact area and the COF. Density functional theory (DFT) simulations were performed on graphene oxide sheets under pressure, showing that strong hydrogen bonding occurs in the presence of intercalated water molecules compared with weak repulsion in the absence of water. It is suggested that this mechanism prevents the separation graphene oxide layers and subsequent formation of nanostructures in humid conditions.

10.
ACS Appl Mater Interfaces ; 8(18): 11466-75, 2016 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-27088238

RESUMEN

Graphene oxide (GO) is a two-dimensional graphitic carbon material functionalized with oxygen-containing surface functional groups. The material is of interest in energy conversion, sensing, chemical processing, gas barrier, and electronics applications. Multilayer GO paper has recently been applied as a new proton conducting membrane in low temperature fuel cells. However, a detailed understanding of the electrical/dielectric properties, including separation of the ionic vs electronic contributions under relevant operating conditions, has so far been lacking. Here, the electrical conductivity and dielectric permittivity of GO paper are investigated in situ from 30 to 120 °C, and from 0 to 100% relative humidity (RH) using impedance spectroscopy. These are related to the water content, measured by thermogravimetric analysis. With the aid of electron blocking measurements, GO is demonstrated to be a mixed electronic-protonic conductor, and the ion transference number is derived for the first time. For RH > 40%, conductivity is dominated by proton transport (with a maximum of 0.5 mS/cm at 90 °C and 100% RH). For RH < 40%, electronic conductivity dominates (with a maximum of 7.4 mS/cm at ∼80 °C and 0% RH). The relative permittivity of GO paper increases with decreasing humidity, from ∼10 at 100% RH to several 1000 at 10% RH. These results underline the potential of GO for application not only as a proton conducting electrolyte but also as a mixed conducting electrode material under appropriate conditions. Such materials are highly applicable in electrochemical energy conversion and storage devices such as fuel cells and electrolyzers.

11.
Sci Rep ; 5: 13126, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26283473

RESUMEN

It is extremely important to understand the properties of supported metal nanoparticles at the atomic scale. In particular, visualizing the interaction between nanoparticle and support, as well as the strain distribution within the particle is highly desirable. Lattice strain can affect catalytic activity, and therefore strain engineering via e.g. synthesis of core-shell nanoparticles or compositional segregation has been intensively studied. However, substrate-induced lattice strain has yet to be visualized directly. In this study, platinum nanoparticles decorated on graphitized carbon or tin oxide supports are investigated using spherical aberration-corrected scanning transmission electron microscopy (Cs-corrected STEM) coupled with geometric phase analysis (GPA). Local changes in lattice parameter are observed within the Pt nanoparticles and the strain distribution is mapped. This reveals that Pt nanoparticles on SnO2 are more highly strained than on carbon, especially in the region of atomic steps in the SnO2 lattice. These substrate-induced strain effects are also reproduced in density functional theory simulations, and related to catalytic oxygen reduction reaction activity. This study suggests that tailoring the catalytic activity of electrocatalyst nanoparticles via the strong metal-support interaction (SMSI) is possible. This technique also provides an experimental platform for improving our understanding of nanoparticles at the atomic scale.

12.
Sci Rep ; 5: 11807, 2015 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-26133654

RESUMEN

Graphene oxide (GO) is hydrophilic and swells significantly when in contact with water. Here, we investigate the change in thickness of multilayer graphene oxide membranes due to intercalation of water, via humidity-controlled observation in an environmental scanning electron microscope (ESEM). The thickness increases reproducibly with increasing relative humidity. Electron energy loss spectroscopy (EELS) reveals the existence of water ice under cryogenic conditions, even in high vacuum environment. Additionally, we demonstrate that freezing then thawing water trapped in the multilayer graphene oxide membrane leads to the opening up of micron-scale inter-lamellar voids due to the expansion of ice crystals.

16.
J Nanosci Nanotechnol ; 8(4): 2147-50, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18572626

RESUMEN

We report substantial improvement of the field emission properties from aligned carbon nanotubes grown on aligned carbon nanofibres by a two-stage plasma enhanced chemical vapour deposition (PECVD) process. The threshold field decreased from 15.0 to 3.6 V/microm after the secondary growth. The field enhancement factor increased from 240 to 1480. This technique allows for superior emission of electrons for carbon nanotube/nanofibre arrays grown directly on highly doped silicon for direct integration in large area displays.


Asunto(s)
Cristalización/métodos , Nanotecnología/métodos , Nanotubos/química , Nanotubos/ultraestructura , Conductividad Eléctrica , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...