Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Brain Behav Immun ; 119: 494-506, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38657842

RESUMEN

Alcohol Use Disorder (AUD) is a persistent condition linked to neuroinflammation, neuronal oxidative stress, and neurodegenerative processes. While the inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9) has demonstrated effectiveness in reducing liver inflammation associated with alcohol, its impact on the brain remains largely unexplored. This study aimed to assess the effects of alirocumab, a monoclonal antibody targeting PCSK9 to lower systemic low-density lipoprotein cholesterol (LDL-C), on central nervous system (CNS) pathology in a rat model of chronic alcohol exposure. Alirocumab (50 mg/kg) or vehicle was administered weekly for six weeks in 32 male rats subjected to a 35 % ethanol liquid diet or a control liquid diet (n = 8 per group). The study evaluated PCSK9 expression, LDL receptor (LDLR) expression, oxidative stress, and neuroinflammatory markers in brain tissues. Chronic ethanol exposure increased PCSK9 expression in the brain, while alirocumab treatment significantly upregulated neuronal LDLR and reduced oxidative stress in neurons and brain vasculature (3-NT, p22phox). Alirocumab also mitigated ethanol-induced microglia recruitment in the cortex and hippocampus (Iba1). Additionally, alirocumab decreased the expression of pro-inflammatory cytokines and chemokines (TNF, CCL2, CXCL3) in whole brain tissue and attenuated the upregulation of adhesion molecules in brain vasculature (ICAM1, VCAM1, eSelectin). This study presents novel evidence that alirocumab diminishes oxidative stress and modifies neuroimmune interactions in the brain elicited by chronic ethanol exposure. Further investigation is needed to elucidate the mechanisms by which PCSK9 signaling influences the brain in the context of chronic ethanol exposure.

2.
Exp Eye Res ; 243: 109890, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38615833

RESUMEN

Phosphodiesterase (PDE) inhibitors - such as vardenafil - are used primarily for treating erectile dysfunction via increasing cyclic guanosine monophosphate (cGMP) levels. Recent studies have also demonstrated their significant cardioprotective effects in several diseases, including diabetes, upon long-term, continuous application. However, PDE inhibitors are not specific for PDE5 and also inhibit the retinal isoform. A sustained rise in cGMP in photoreceptors is known to be toxic; therefore, we hypothesized that long-term vardenafil treatment might result in retinotoxicity. The hypothesis was tested in a clinically relevant animal model of type 2 diabetes mellitus. Histological experiments were performed on lean and diabetic Zucker Diabetic Fatty rats. Half of the animals were treated with vardenafil for six months, and the retinal effects were evaluated. Vardenafil treatment alleviated rod outer segment degeneration but decreased rod numbers in some positions and induced changes in the interphotoreceptor matrix, even in control animals. Vardenafil treatment decreased total retinal thickness in the control and diabetic groups and reduced the number of nuclei in the outer nuclear layer. Müller cell activation was detectable even in the vardenafil-treated control animals, and vardenafil did not improve gliosis in the diabetic group. Vardenafil-treated animals showed complex retinal alterations with improvements in some parameters while deterioration in others. Our results point towards the retinotoxicity of vardenafil, even without diabetes, which raises doubts about the retinal safety of long-term continuous vardenafil administration. This effect needs to be considered when approving PDE inhibitors for alternative indications.

3.
JACC Basic Transl Sci ; 8(10): 1334-1353, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38094682

RESUMEN

Cardiovascular diseases (CVDs) are the leading cause of death among elderly people. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is an important regulator of cholesterol metabolism. Herein, we investigated the role of PCSK9 in age-related CVD. Both in humans and rats, blood PCSK9 level correlated positively with increasing age and the development of cardiovascular dysfunction. Age-related fatty degeneration of liver tissue positively correlated with serum PCSK9 levels in the rat model, while development of age-related nonalcoholic fatty liver disease correlated with cardiovascular functional impairment. Network analysis identified PCSK9 as an important factor in age-associated lipid alterations and it correlated positively with intima-media thickness, a clinical parameter of CVD risk. PCSK9 inhibition with alirocumab effectively reduced the CVD progression in aging rats, suggesting that PCSK9 plays an important role in cardiovascular aging.

4.
Geroscience ; 45(5): 3059-3077, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37726433

RESUMEN

The liver, as a crucial metabolic organ, undergoes significant pathological changes during the aging process, which can have a profound impact on overall health. To gain a comprehensive understanding of these alterations, we employed data-driven approaches, along with biochemical methods, histology, and immunohistochemistry techniques, to systematically investigate the effects of aging on the liver. Our study utilized a well-established rat aging model provided by the National Institute of Aging. Systems biology approaches were used to analyze genome-wide transcriptomics data from liver samples obtained from young (4-5 months old) and aging (20-21 months old) Fischer 344 rats. Our findings revealed pathological changes occurring in various essential biological processes in aging livers. These included mitochondrial dysfunction, increased oxidative/nitrative stress, decreased NAD + content, impaired amino acid and protein synthesis, heightened inflammation, disrupted lipid metabolism, enhanced apoptosis, senescence, and fibrosis. These results were validated using independent datasets from both human and rat aging studies. Furthermore, by employing co-expression network analysis, we identified novel driver genes responsible for liver aging, confirmed our findings in human aging subjects, and pointed out the cellular localization of the driver genes using single-cell RNA-sequencing human data. Our study led to the discovery and validation of a liver-specific gene, proprotein convertase subtilisin/kexin type 9 (PCSK9), as a potential therapeutic target for mitigating the pathological processes associated with aging in the liver. This finding envisions new possibilities for developing interventions aimed to improve liver health during the aging process.


Asunto(s)
Proproteína Convertasa 9 , Transcriptoma , Humanos , Ratas , Animales , Proproteína Convertasa 9/genética , Proproteína Convertasa 9/metabolismo , Hígado/metabolismo , Envejecimiento/genética
6.
Geroscience ; 44(3): 1727-1741, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35460032

RESUMEN

Diabetes mellitus promotes accelerated cardiovascular aging and inflammation, which in turn facilitate the development of cardiomyopathy/heart failure. High glucose-induced oxidative/nitrative stress, activation of various pro-inflammatory, and cell death pathways are critical in the initiation and progression of the changes culminating in diabetic cardiomyopathy. Cannabinoid 2 receptor (CB2R) activation in inflammatory cells and activated endothelium attenuates the pathological changes associated with atherosclerosis, myocardial infarction, stroke, and hepatic cardiomyopathy. In this study, we explored the role of CB2R signaling in myocardial dysfunction, oxidative/nitrative stress, inflammation, cell death, remodeling, and fibrosis associated with diabetic cardiomyopathy in type 1 diabetic mice. Control human heart left ventricles and atrial appendages, similarly to mouse hearts, had negligible CB2R expression determine by RNA sequencing or real-time RT-PCR. Diabetic cardiomyopathy was characterized by impaired diastolic and systolic cardiac function, enhanced myocardial CB2R expression, oxidative/nitrative stress, and pro-inflammatory response (tumor necrosis factor-α, interleukin-1ß, intracellular adhesion molecule 1, macrophage inflammatory protein-1, monocyte chemoattractant protein-1), macrophage infiltration, fibrosis, and cell death. Pharmacological activation of CB2R with a selective agonist attenuated diabetes-induced inflammation, oxidative/nitrative stress, fibrosis and cell demise, and consequent cardiac dysfunction without affecting hyperglycemia. In contrast, genetic deletion of CB2R aggravated myocardial pathology. Thus, selective activation of CB2R ameliorates diabetes-induced myocardial tissue injury and preserves the functional contractile capacity of the myocardium in the diabetic milieu. This is particularly encouraging, since unlike CB1R agonists, CB2R agonists do not elicit psychoactive activity and cardiovascular side effects and are potential clinical candidates in the treatment of diabetic cardiovascular and other complications.


Asunto(s)
Diabetes Mellitus Experimental , Cardiomiopatías Diabéticas , Animales , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Cardiomiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Fibrosis , Inflamación/patología , Ratones , Estrés Oxidativo , Receptores de Cannabinoides/metabolismo , Receptores de Cannabinoides/uso terapéutico
7.
Antioxidants (Basel) ; 10(11)2021 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-34829647

RESUMEN

Heart failure with preserved ejection fraction (HFpEF) and right ventricular (RV) dysfunction are frequent complications of diabetic cardiomyopathy. Here we aimed to characterize RV and left ventricular (LV) remodeling and its prevention by vardenafil (a long-acting phosphodiesterase-5A (PDE-5A) inhibitor) administration in a diabetic HFpEF model. Zucker Diabetic Fatty (ZDF) and control, ZDF Lean (Lean) male rats received 10 mg/kg vardenafil (ZDF + Vard; Lean + Vard) per os, on a daily basis for a period of 25 weeks. In vitro force measurements, biochemical and histochemical assays were employed to assess cardiomyocyte function and signaling. Vardenafil treatment increased cyclic guanosine monophosphate (cGMP) levels and decreased 3-nitrotyrosine (3-NT) levels in the left and right ventricles of ZDF animals, but not in Lean animals. Cardiomyocyte passive tension (Fpassive) was higher in LV and RV cardiomyocytes of ZDF rats than in those receiving preventive vardenafil treatment. Levels of overall titin phosphorylation did not differ in the four experimental groups. Maximal Ca2+-activated force (Fmax) of LV and RV cardiomyocytes were preserved in ZDF animals. Ca2+-sensitivity of isometric force production (pCa50) was significantly higher in LV (but not in RV) cardiomyocytes of ZDF rats than in their counterparts in the Lean or Lean + Vard groups. In accordance, the phosphorylation levels of cardiac troponin I (cTnI) and myosin binding protein-C (cMyBP-C) were lower in LV (but not in RV) cardiomyocytes of ZDF animals than in their counterparts of the Lean or Lean + Vard groups. Vardenafil treatment normalized pCa50 values in LV cardiomyocytes, and it decreased pCa50 below control levels in RV cardiomyocytes in the ZDF + Vard group. Our data illustrate partially overlapping myofilament protein alterations for LV and RV cardiomyocytes in diabetic rat hearts upon long-term PDE-5A inhibition. While uniform patterns in cGMP, 3-NT and Fpassive levels predict identical effects of vardenafil therapy for the diastolic function in both ventricles, the uneven cTnI, cMyBP-C phosphorylation levels and pCa50 values implicate different responses for the systolic function.

8.
Invest Ophthalmol Vis Sci ; 62(6): 20, 2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-34010957

RESUMEN

Purpose: In diabetic subjects, early visual functional alterations such as color vision deficiencies (CVDs) are known to precede clinically apparent diabetic retinopathy. Prominent photoreceptor outer segment degeneration and an increase in the number of retinal dual cones (co-expressing S- and M-opsins simultaneously) have been described in diabetic rat models, suggesting a connection with the development of CVDs. As cone opsin expression is controlled by thyroid hormones, we investigated the diabetic retina in association with thyroid hormone alterations. Methods: In rat models of type 1 and 2 diabetes, dual cones were labeled by immunohistochemistry, and their numbers were analyzed in relation to free triiodothyronine (fT3) and free thyroxine (fT4) levels. Quantification of dual cones was also performed in human postmortem retinas. Additionally, a cross-sectional case-control study was performed where thyroid hormone levels were measured and color vision was assessed with Lanthony desaturated D15 discs. Results: A higher number of dual cones was detectable in diabetic rats, correlating with fT4 levels. Dual cones were also present in postmortem human retinas, with higher numbers in the three diabetic retinas. As expected, age was strongly associated with CVDs in human patients, and the presence of diabetes also increased the risk. However, the current study failed to detect any effect of thyroid hormones on the development of CVDs. Conclusions: Our results point toward the involvement of thyroid homeostasis in the opsin expression changes in diabetic rats and human samples. The evaluation of the possible clinical consequences warrants further research.


Asunto(s)
Diabetes Mellitus Experimental/sangre , Retinopatía Diabética/sangre , Células Fotorreceptoras Retinianas Conos/patología , Hormonas Tiroideas/sangre , Adulto , Anciano , Animales , Glucemia/metabolismo , Estudios de Casos y Controles , Visión de Colores/fisiología , Opsinas de los Conos/metabolismo , Estudios Transversales , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/patología , Retinopatía Diabética/patología , Femenino , Hemoglobina Glucada/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Ratas , Ratas Sprague-Dawley , Ratas Zucker , Células Fotorreceptoras Retinianas Conos/metabolismo , Adulto Joven
9.
J Sports Med Phys Fitness ; 61(3): 489-496, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32744049

RESUMEN

BACKGROUND: Exercise training is associated with hypertrophy of left ventricle (LV). The aim of the present study is to evaluate sex differences in the adaptation of the coronary contractile function in physiological left ventricular hypertrophy induced by long-term swim training. METHODS: Thirty-two Wistar rats were randomly divided into 4 groups: exercised male (ExM), exercised female (ExF), untrained control male (CoM), and untrained control female (CoF). The trained animals underwent a 12-week-long swim training program. After finishing the training program, LV morphology and function were checked by echocardiography. The spontaneous tone, thromboxane (TxA2) agonist-induced vascular contractility and non-endothelial dilatation of the isolated intramural coronary resistance artery were examined by pressure microangiometry. The thromboxane receptor (TxA2R) protein expression in the wall of coronary arteries was examined using immunohistochemistry. RESULTS: The LV mass index was significantly higher in the ExM and ExF groups, furthermore the LV mass index was significantly higher in female than in male animals. ExM animals had lower spontaneous tone than ExF. TxA2 agonist-induced tone was raised only in ExF animals. The resistance coronary artery of exercised male animals had a significantly lower level of TxA2R positivity compared to exercised females. CONCLUSIONS: Both sexes broaden their range of contractility following chronic swimming, but the vessel tone shifted toward contraction in exercised female rats, while these values shifted toward relaxation in males. These observations underline the significance of identifying potential gender differences in the chronic exercise-induced coronary vascular remodeling in human athletes.


Asunto(s)
Arteriolas/fisiología , Natación/fisiología , Vasoconstricción/fisiología , Animales , Ecocardiografía , Femenino , Ventrículos Cardíacos/diagnóstico por imagen , Humanos , Hipertrofia Ventricular Izquierda/fisiopatología , Masculino , Condicionamiento Físico Animal , Ratas , Ratas Wistar
10.
Nat Rev Cardiol ; 18(2): 117-135, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32999450

RESUMEN

The liver is a crucial metabolic organ that has a key role in maintaining immune and endocrine homeostasis. Accumulating evidence suggests that chronic liver disease might promote the development of various cardiac disorders (such as arrhythmias and cardiomyopathy) and circulatory complications (including systemic, splanchnic and pulmonary complications), which can eventually culminate in clinical conditions ranging from portal and pulmonary hypertension to pulmonary, cardiac and renal failure, ascites and encephalopathy. Liver diseases can affect cardiovascular function during the early stages of disease progression. The development of cardiovascular diseases in patients with chronic liver failure is associated with increased morbidity and mortality, and cardiovascular complications can in turn affect liver function and liver disease progression. Furthermore, numerous infectious, inflammatory, metabolic and genetic diseases, as well as alcohol abuse can also influence both hepatic and cardiovascular outcomes. In this Review, we highlight how chronic liver diseases and associated cardiovascular effects can influence different organ pathologies. Furthermore, we explore the potential roles of inflammation, oxidative stress, vasoactive mediator imbalance, dysregulated endocannabinoid and autonomic nervous systems and endothelial dysfunction in mediating the complex interplay between the liver and the systemic vasculature that results in the development of the extrahepatic complications of chronic liver disease. The roles of ageing, sex, the gut microbiome and organ transplantation in this complex interplay are also discussed.


Asunto(s)
Enfermedades Cardiovasculares/fisiopatología , Inflamación , Hepatopatías/fisiopatología , Estrés Oxidativo , Enfermedades Cardiovasculares/complicaciones , Enfermedad Crónica , Humanos , Inflamación/fisiopatología , Hepatopatías/complicaciones , Estrés Oxidativo/fisiología
11.
J Clin Invest ; 131(3)2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33301423

RESUMEN

Neutrophil infiltration around lipotoxic hepatocytes is a hallmark of nonalcoholic steatohepatitis (NASH); however, how these 2 types of cells communicate remains obscure. We have previously demonstrated that neutrophil-specific microRNA-223 (miR-223) is elevated in hepatocytes to limit NASH progression in obese mice. Here, we demonstrated that this elevation of miR-223 in hepatocytes was due to preferential uptake of miR-223-enriched extracellular vesicles (EVs) derived from neutrophils as well other types of cells, albeit to a lesser extent. This selective uptake was dependent on the expression of low-density lipoprotein receptor (LDLR) on hepatocytes and apolipoprotein E (APOE) on neutrophil-derived EVs, which was enhanced by free fatty acids. Once internalized by hepatocytes, the EV-derived miR-223 acted to inhibit hepatic inflammatory and fibrogenic gene expression. In the absence of this LDLR- and APOE-dependent uptake of miR-223-enriched EVs, the progression of steatosis to NASH was accelerated. In contrast, augmentation of this transfer by treatment with an inhibitor of proprotein convertase subtilisin/kexin type 9, a drug used to lower blood cholesterol by upregulating LDLR, ameliorated NASH in mice. This specific role of LDLR and APOE in the selective control of miR-223-enriched EV transfer from neutrophils to hepatocytes may serve as a potential therapeutic target for NASH.


Asunto(s)
Comunicación Celular , Vesículas Extracelulares/metabolismo , Hepatocitos/metabolismo , MicroARNs/metabolismo , Neutrófilos/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Receptores de LDL/metabolismo , Animales , Vesículas Extracelulares/genética , Vesículas Extracelulares/patología , Hepatocitos/patología , Ratones , Ratones Noqueados , Ratones Obesos , MicroARNs/genética , Neutrófilos/patología , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Receptores de LDL/genética
12.
Biol Sex Differ ; 11(1): 7, 2020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-32051031

RESUMEN

BACKGROUND: Biomechanical remodeling of coronary resistance arteries in physiological left ventricular hypertrophy has not yet been analyzed, and the possible sex differences are unknown. METHODS: Wistar rats were divided into four groups: male and female sedentary controls (MSe and FSe) and male and female animals undergoing a 12-week intensive swim training program (MEx and FEx). On the last day, the in vitro contractility, endothelium-dependent dilatation, and biomechanical properties of the intramural coronary resistance arteries were investigated by pressure microarteriography. Elastica and collagen remodeling were studied in histological sections. RESULTS: A similar outer radius and reduced inner radius resulted in an elevated wall to lumen ratio in the MEx and FEx animals compared to that in the sedentary controls. The wall elastic moduli increased in the MEx and FEx rats. Spontaneous and TxA2 agonist-induced tone was increased in the FEx animals, whereas endothelium-dependent relaxation became more effective in MEx rats. Arteries of FEx rats had stronger contraction, while arteries of MEx animals had improved dilation. CONCLUSIONS: According to our results, the coronary arterioles adapted to an elevated load during long-term exercise, and this adaptation depended on sex. It is important to emphasize that in addition to differences, we also found many similarities between the sexes in the adaptive response to exercise. The observed sport adaptation in the coronary resistance arteries of rats may contribute to a better understanding of the physiological and pathological function of these arteries in active and retired athletes of different sexes.


Asunto(s)
Arteriolas/fisiología , Vasos Coronarios/citología , Vasos Coronarios/fisiología , Condicionamiento Físico Animal/fisiología , Caracteres Sexuales , Función Ventricular Izquierda/fisiología , Animales , Arteriolas/citología , Femenino , Masculino , Ratas Wistar
13.
Hepatology ; 71(4): 1391-1407, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31469200

RESUMEN

BACKGROUND AND AIMS: Hepatic cardiomyopathy, a special type of heart failure, develops in up to 50% of patients with cirrhosis and is a major determinant of survival. However, there is no reliable model of hepatic cardiomyopathy in mice. We aimed to characterize the detailed hemodynamics of mice with bile duct ligation (BDL)-induced liver fibrosis, by monitoring echocardiography and intracardiac pressure-volume relationships and myocardial structural alterations. Treatment of mice with a selective cannabinoid-2 receptor (CB2 -R) agonist, known to attenuate inflammation and fibrosis, was used to explore the impact of liver inflammation and fibrosis on cardiac function. APPROACH AND RESULTS: BDL induced massive inflammation (increased leukocyte infiltration, inflammatory cytokines, and chemokines), oxidative stress, microvascular dysfunction, and fibrosis in the liver. These pathological changes were accompanied by impaired diastolic, systolic, and macrovascular functions; cardiac inflammation (increased macrophage inflammatory protein 1, interleukin-1, P-selectin, cluster of differentiation 45-positive cells); and oxidative stress (increased malondialdehyde, 3-nitrotyrosine, and nicotinamide adenine dinucleotide phosphate oxidases). CB2 -R up-regulation was observed in both livers and hearts of mice exposed to BDL. CB2 -R activation markedly improved hepatic inflammation, impaired microcirculation, and fibrosis. CB2 -R activation also decreased serum tumor necrosis factor-alpha levels and improved cardiac dysfunction, myocardial inflammation, and oxidative stress, underlining the importance of inflammatory mediators in the pathology of hepatic cardiomyopathy. CONCLUSIONS: We propose BDL-induced cardiomyopathy in mice as a model for hepatic/cirrhotic cardiomyopathy. This cardiomyopathy, similar to cirrhotic cardiomyopathy in humans, is characterized by systemic hypotension and impaired macrovascular and microvascular function accompanied by both systolic and diastolic dysfunction. Our results indicate that the liver-heart inflammatory axis has a pivotal pathophysiological role in the development of hepatic cardiomyopathy. Thus, controlling liver and/or myocardial inflammation (e.g., with selective CB2 -R agonists) may delay or prevent the development of cardiomyopathy in severe liver disease.


Asunto(s)
Cardiomiopatías/etiología , Insuficiencia Cardíaca/etiología , Cirrosis Hepática/complicaciones , Receptor Cannabinoide CB2/metabolismo , Animales , Cardiomiopatías/patología , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/patología , Hepatitis/metabolismo , Hepatitis/patología , Inflamación/metabolismo , Inflamación/patología , Hígado , Cirrosis Hepática/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Miocarditis/metabolismo , Miocarditis/patología , Miocardio/metabolismo , Miocardio/patología , Receptor Cannabinoide CB2/agonistas , Transducción de Señal
14.
J Hepatol ; 72(4): 736-745, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31786256

RESUMEN

BACKGROUND & AIMS: Acute-on-chronic liver failure (ACLF) is a clinical syndrome defined by liver failure on pre-existing chronic liver disease. It is often associated with bacterial infection and high short-term mortality. Experimental models that fully reproduce ACLF are lacking, so too are effective pharmacological therapies for this condition. METHODS: To mimic ACLF conditions, we developed a severe liver injury model by combining chronic injury (chronic carbon tetrachloride [CCl4] injection), acute hepatic insult (injection of a double dose of CCl4), and bacterial infection (intraperitoneal injection of bacteria). Serum and liver samples from patients with ACLF or acute drug-induced liver injury (DILI) were used. Liver injury and regeneration were assessed to ascertain the potential benefits of interleukin-22 (IL-22Fc) administration. RESULTS: This severe liver injury model recapitulated some of the key features of clinical ACLF, including acute-on-chronic liver injury, bacterial infection, multi-organ injury, and high mortality. Liver regeneration in this model was severely impaired because of a shift from the activation of the pro-regenerative IL-6/STAT3 pathway to the anti-regenerative IFN-γ/STAT1 pathway. The impaired IL-6/STAT3 activation was due to the inability of Kupffer cells to produce IL-6; whereas the enhanced STAT1 activation was due to a strong innate immune response and subsequent production of IFN-γ. Compared to patients with DILI, patients with ACLF had higher levels of IFN-γ but lower liver regeneration. IL-22Fc treatment improved survival in ACLF mice by reversing the STAT1/STAT3 pathway imbalance and enhancing expression of many antibacterial genes in a manner involving the anti-apoptotic protein BCL2. CONCLUSIONS: Acute-on-chronic liver injury or bacterial infection is associated with impaired liver regeneration due to a shift from a pro-regenerative to an anti-regenerative pathway. IL-22Fc therapy reverses this shift and attenuates bacterial infection, thus IL-22Fc may have therapeutic potential for ACLF treatment. LAY SUMMARY: A mouse model combining chronic liver injury, acute hepatic insult, and bacterial infection recapitulates some of the key features of acute-on-chronic liver failure (ACLF) in patients. Both fibrosis and bacterial infection contribute to the impaired regenerative capacity of the liver in patients with ACLF. Herein, we show that IL-22Fc therapy improves ACLF by reprogramming impaired regenerative pathways and attenuating bacterial infection. Thus, it may have therapeutic potential for patients with ACLF.


Asunto(s)
Insuficiencia Hepática Crónica Agudizada/sangre , Insuficiencia Hepática Crónica Agudizada/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/sangre , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Interleucinas/administración & dosificación , Infecciones por Klebsiella/tratamiento farmacológico , Klebsiella pneumoniae , Regeneración Hepática/efectos de los fármacos , Enfermedad Aguda , Insuficiencia Hepática Crónica Agudizada/inducido químicamente , Insuficiencia Hepática Crónica Agudizada/microbiología , Adulto , Animales , Tetracloruro de Carbono/administración & dosificación , Tetracloruro de Carbono/efectos adversos , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Modelos Animales de Enfermedad , Femenino , Hepatocitos/metabolismo , Humanos , Infecciones por Klebsiella/microbiología , Macrófagos del Hígado/metabolismo , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Resultado del Tratamiento , Interleucina-22
15.
Free Radic Biol Med ; 152: 540-550, 2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-31770583

RESUMEN

STUDY RATIONALE: Hepatorenal syndrome (HRS) is a life-threatening complication of end-stage liver disease characterized by the rapid decline of kidney function. Herein, we explored the therapeutic potential of targeting the cannabinoid-2 receptor (CB2-R) utilizing a commonly used mouse model of liver fibrosis and hepatorenal syndrome (HRS), induced by bile duct ligation (BDL). METHODS: Gene expression analysis, histological evaluation, determination of serum levels of renal injury-biomarkers were used to characterize the BDL-induced organ injury; laser speckle analysis to measure microcirculation in the kidneys. KEY RESULTS: We found that liver injury triggered marked inflammation and oxidative stress in the kidneys of BDL-operated mice. We detected pronounced histopathological alterations with tubular injury paralleled with increased inflammation, oxidative/nitrative stress and fibrotic remodeling both in hepatic and renal tissues as well as endothelial activation and markedly impaired renal microcirculation. This was accompanied by increased CB2-R expression in both the liver and the kidney tissues of diseased animals. A selective CB2-R agonist, HU-910, markedly decreased numerous markers of inflammation, oxidative stress and fibrosis both in the liver and in the kidneys. HU-910 also attenuated markers of kidney injury and improved the impaired renal microcirculation in BDL-operated mice. CONCLUSIONS: Our results suggest that oxidative stress, inflammation and microvascular dysfunction are key events in the pathogenesis of BDL-associated renal failure. Furthermore, we demonstrate that targeting the CB2-R by selective agonists may represent a promising new avenue to treat HRS by attenuating tissue and vascular inflammation, oxidative stress, fibrosis and consequent microcirculatory dysfunction in the kidneys.


Asunto(s)
Cannabinoides , Síndrome Hepatorrenal , Animales , Conductos Biliares/cirugía , Modelos Animales de Enfermedad , Síndrome Hepatorrenal/tratamiento farmacológico , Síndrome Hepatorrenal/etiología , Síndrome Hepatorrenal/metabolismo , Hígado/metabolismo , Ratones , Microcirculación , Estrés Oxidativo , Receptores de Cannabinoides/metabolismo
16.
JACC Basic Transl Sci ; 4(5): 625-637, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31768478

RESUMEN

Excessive binge alcohol drinking may adversely affect cardiovascular function. In this study we characterize the detailed hemodynamic effects of an acute alcohol binge in mice using multiple approaches and investigate the role of the endocannabinoid-cannabinoid 1 receptor (CB1-R) signaling in these effects. Acute alcohol binge was associated with elevated levels of cardiac endocannabinoid anandamide and profound cardiovascular dysfunction lasting for several hours and redistribution of circulation. These changes were attenuated by CB1-R antagonist or in CB1-R knockout mice. Our results suggest that a single alcohol binge has profound effects on the cardiovascular system, which involve endocannabinoid-CB1-R signaling.

17.
Sci Rep ; 9(1): 17167, 2019 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31748600

RESUMEN

Alcoholic liver disease (ALD) causes significant morbidity and mortality, and pharmacological treatment options are limited. In this study, we evaluated the PCSK9 inhibitor alirocumab, a monoclonal antibody that robustly reduces low-density lipoprotein cholesterol (LDL-C), for the treatment of ALD using a rat model of chronic alcohol exposure. Alirocumab (50 mg/kg) or vehicle was administered weekly for 6 weeks to rats receiving a 12% alcohol liquid diet or an isocaloric control diet. At the end of the alcohol exposure protocol, serum and liver samples were obtained for molecular characterization and histopathological analysis. PCSK9 inhibition with alirocumab attenuated alcohol-induced hepatic triglyceride accumulation through regulation of lipid metabolism (mRNA expression of modulators of fatty acid synthesis (FAS) and catabolism (PPARα and CPT1)), hepatocellular injury (ALT), hepatic inflammation (mRNA expression of pro-inflammatory cytokines/chemokines (TNFa, IL-1ß, IL-22, IL-33, IL-17α, IL-2, MIP-2, and MCP-1), and neutrophil infiltration (myeloperoxidase staining)). Alirocumab treatment also attenuated alcohol-induced PCSK9 mRNA elevation and upregulated LDL-receptor (LDL-R) via modulation of the transcription factors (SREBP-1, SREBP-2, and E2F1) in liver. We demonstrated that chronic anti-PCSK9 treatment using the monoclonal antibody alirocumab attenuated alcohol-induced steatohepatitis in the rat model. Given the large unmet clinical need for effective and novel treatments for ALD, anti-PCSK9 treatment with the monoclonal antibody that spares liver metabolism is a viable new therapeutic possibility. Future studies are needed to elucidate the exact role of PCSK9 in ALD and alcohol use disorder (AUD) and to evaluate efficacy and safety of anti-PCSK9 treatment in clinical populations with ALD/AUD.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Hipolipemiantes/farmacología , Hepatopatías Alcohólicas/tratamiento farmacológico , Inhibidores de PCSK9 , Alcoholismo/tratamiento farmacológico , Alcoholismo/metabolismo , Animales , LDL-Colesterol/metabolismo , Modelos Animales de Enfermedad , Etanol/efectos adversos , Hígado Graso/tratamiento farmacológico , Hígado Graso/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Lipogénesis/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hepatopatías Alcohólicas/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Receptores de LDL/metabolismo , Factores de Transcripción/metabolismo
18.
Sci Rep ; 9(1): 10463, 2019 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-31320684

RESUMEN

A thinning of the inner retina is one of the earliest potential markers of neuroretinal damage in diabetic subjects. The histological background is uncertain; retinal ganglion cell (RGC) loss and changes in the structure or thickness of the inner plexiform layer (IPL) have been suspected. Studies conducted on animal models on RGC pathology gave contradictory results. Hereby we present RGC numbers, distribution patterns and IPL thickness from Zucker Diabetic Fatty (ZDF) rats. After labelling RGCs on retinal whole mounts, isodensity maps were constructed, RGC numbers and distribution patterns analysed using a custom-built algorithm, enabling point-by-point comparison. There was no change in staining characteristics of the antibodies and no significant difference in average RGC densities was found compared to controls. The distribution patterns were also comparable and no significant difference was found in IPL thickness and stratification or in the number of apoptotic cells in the ganglion cell layer (GCL). Our results provide a detailed evaluation of the inner retina and exclude major RGC loss in ZDF rats and suggest that other factors could serve as a potential explanation for inner retinal thinning in clinical studies. Our custom-built method could be adopted for the assessment of other animal or human retinas.


Asunto(s)
Apoptosis , Diabetes Mellitus Experimental/fisiopatología , Nervio Óptico/patología , Células Ganglionares de la Retina/patología , Animales , Glucemia/metabolismo , Peso Corporal , Masculino , Nervio Óptico/metabolismo , Ratas , Ratas Zucker , Células Ganglionares de la Retina/metabolismo
19.
Front Physiol ; 10: 889, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31354526

RESUMEN

Background: Recent evidences suggest that sex hormones may be involved in the regulation of exercise-induced left ventricular (LV) hypertrophy. However, the sex-specific functional consequences of exercise-induced myocardial hypertrophy is still not investigated in detail. We aimed at understanding the sex-specific functional and morphological alterations in the LV and the underlying molecular changes in a rat model of athlete's heart. Methods: We divided our young, adult male and female rats into control and exercised groups. Athlete's heart was induced by a 12-week long swim training. Following the training period, we assessed LV hypertrophy with echocardiography, while pressure-volume analysis was performed to investigate in vivo LV function. After in vivo experiments, molecular biological studies and histological investigations were performed. Results: Echocardiography and post-mortem measured heart weight data indicated LV hypertrophy in both genders, nevertheless it was more pronounced in females. Despite the more significant relative hypertrophy in females, characteristic functional parameters did not show notable differences between the genders. LV pressure-volume analysis showed increased stroke volume, improved contractility and stroke work and unaltered LV stiffness in both male and female exercised rats, while active relaxation was ameliorated solely in male animals. The induction of Akt signaling was more significant in females compared to males. There was also a characteristic difference in the mitogen-activated protein kinase pathway as suppressed phosphorylation of p44/42 MAPK (Erk) and mTOR was observed in female exercised rats, but not in male ones. Myosin heavy chain α (MHC)/ß-MHC ratio did not differ in males, but increased markedly in females. Conclusion: Our results confirm that there is a more pronounced exercise-induced LV hypertrophy in females as compared to the males, however, there are only minor differences regarding LV function. There are characteristic molecular differences between male and female animals, that can explain different degrees of LV hypertrophy.

20.
PeerJ ; 7: e6213, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30671299

RESUMEN

The natural distribution, habitat, growth and evolutionary history of tree species are strongly dependent on ecological and genetic processes in ecosystems subject to fluctuating climatic conditions, but there have been few experimental comparisons of sensitivity between species. We compared the responses of two broadleaved tree species (Fagus sylvatica and Quercus petraea) and two conifer tree species (Pinus sylvestris and Picea abies) to climatic transfers by fitting models containing the same climatic variables. We used published data from European provenance test networks to model the responses of individual populations nested within species. A mixed model approach was applied to develop a response function for tree height over climatic transfer distance, taking into account the climatic conditions at both the seed source and the test location. The two broadleaved species had flat climatic response curves, indicating high levels of plasticity in populations, facilitating adaptation to a broader range of environments, and conferring a high potential for resilience in the face of climatic change. By contrast, the two conifer species had response curves with more pronounced slopes, indicating a lower resilience to climate change. This finding may reflect stronger genetic clines in P. sylvestris and P. abies, which constrain their climate responses to narrower climatic ranges. The response functions had maxima that deviated from the expected maximum productivity in the climate of provenance towards cooler/moister climate conditions, which we interpreted as an adaptation lag. Unilateral, linear regression analyses following transfer to warmer and drier sites confirmed a decline in productivity, predictive of the likely impact of ongoing climate change on forest populations. The responses to mimicked climate change evaluated here are of considerable interest for forestry and ecology, supporting projections of expected performance based on "real-time" field data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...