Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life (Basel) ; 13(5)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37240753

RESUMEN

Microbial degradation of aromatic hydrocarbons is an emerging technology, and it is well recognized for its economic methods, efficiency, and safety; however, its exploration is still scarce and greater emphasis on cyanobacteria-bacterial mutualistic interactions is needed. We evaluated and characterized the phenanthrene biodegradation capacity of consortium dominated by Fischerella sp. under holoxenic conditions with aerobic heterotrophic bacteria and their molecular identification through 16S rRNA Illumina sequencing. Results indicated that our microbial consortium can degrade up to 92% of phenanthrene in five days. Bioinformatic analyses revealed that consortium was dominated by Fischerella sp., however different members of Nostocaceae and Weeksellaceae, as well as several other bacteria, such as Chryseobacterium, and Porphyrobacter, were found to be putatively involved in the biological degradation of phenanthrene. This work contributes to a better understanding of biodegradation of phenanthrene by cyanobacteria and identify the microbial diversity related.

2.
Microorganisms ; 10(5)2022 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-35630427

RESUMEN

Halophilic microorganisms are potentially capable as platforms to produce low-cost biosurfactants. However, the robustness of bioprocesses is still a challenge and, therefore, it is essential to understand the effects of microbiological culture conditions through bioreactor engineering. Based on a design of experiments (DOE) and a response surface methodology (RSM) tailored and taken from the literature, the present work focuses on the evaluation of a composite central design (CCD) under batch cultures in stirred-tank bioreactors with the halophilic bacteria Salibacterium sp. 4CTb in order to determine the operative conditions that favor mass transfer and optimize the production of a lipopeptide. The results obtained showed profiles highlighting the most favorable culture conditions, which lead to an emulsification index (E24%) higher than 70%. Moreover, through the behavior of dissolved oxygen (DO), it was possible to experimentally evaluate the higher volumetric coefficient of mass transfer in the presence of lipopeptide (kLa = 31 1/h) as a key criterion for the synthesis of the biosurfactant on further cell expansion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...