Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Commun Signal ; 17(1): 75-88, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35723796

RESUMEN

Receptor tyrosine kinase-like orphan receptor 2 (ROR2) is a protein with important functions during embryogenesis that is dysregulated in human cancer. An intriguing feature of this receptor is that it plays opposite roles in different tumor types either promoting or inhibiting tumor progression. Understanding the complex role of this receptor requires a more profound exploration of both the altered biological and molecular mechanisms. Here, we describe that ROR2 promotes Epithelial-Mesenchymal Transition (EMT) by inducing cadherin switch and the upregulation of the transcription factors ZEB1, Twist, Slug, Snail, and HIF1A, together with a mesenchymal phenotype and increased migration. We show that ROR2 activates both p38 and ERK mitogen-activated protein kinase pathways independently of Wnt5a. Further, we demonstrated that the upregulation of EMT-related proteins depends on the hyperactivation of the ERK pathway far above the typical high constitutive activity observed in melanoma. In addition, ROR2 also promoted ERK phosphorylation, EMT, invasion, and necrosis in xenotransplanted mice. ROR2 also associates with EMT in tumor samples from melanoma patients where analysis of large cohorts revealed that increased ROR2 levels are linked to EMT signatures. This important role of ROR2 translates into melanoma patient' s prognosis since elevated ROR2 levels reduced overall survival and distant metastasis-free survival of patients with lymph node metastasis. In sum, these results demonstrate that ROR2 contributes to melanoma progression by inducing EMT and necrosis and can be an attractive therapeutic target for melanoma.

3.
Cell Mol Biol Lett ; 27(1): 23, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35260073

RESUMEN

BACKGROUND: ROR2 is a tyrosine-kinase receptor whose expression is dysregulated in many human diseases. In cancer, ROR2 stimulates proliferation, survival, migration, and metastasis, and is associated with more aggressive tumor stages. The purpose of this work is to study the role of ROR2 in the chemoresistance of melanoma. METHODS: Gain- and loss-of-function experiments were used to study the biological function of ROR2 in melanoma. Cell death induced by chemotherapeutic drugs and BH-3 mimetics was evaluated using crystal violet cytotoxicity assays and annexin V/propidium iodide staining. Western blots were used to evaluate the expression of proteins implicated in cell death. The differences observed between cells with manipulation of ROR2 levels and control cells were evaluated using both Student's t-test and ANOVA. RESULTS: We describe that ROR2 contributes to tumor progression by enhancing the resistance of melanoma cells to both chemotherapeutic drugs and BH-3 mimetics. We demonstrate that ROR2 reduced cell death upon treatment with cisplatin, dacarbazine, lomustine, camptothecin, paclitaxel, ABT-737, TW-37, and venetoclax. This effect was mediated by the inhibition of apoptosis. In addition, we investigated the molecular mechanisms implicated in this role of ROR2. We identified the MDM2/p53 pathway as a novel target of ROR2 since ROR2 positively regulates MDM2 levels, thus leading to p53 downregulation. We also showed that ROR2 also upregulates Mcl-1 and Bcl2-xL while it negatively regulates Bax and Bid expression. The effect of ROR2 on the expression of these proteins is mediated by the hyperactivation of ERK. CONCLUSIONS: These results demonstrate that ROR2 contributes to melanoma progression by inhibiting apoptosis and increasing chemoresistance. These results not only position ROR2 as a marker of chemoresistance but also support its use as a novel therapeutic target in cancer.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular , Melanoma , Proteínas Proto-Oncogénicas c-bcl-2 , Receptores Huérfanos Similares al Receptor Tirosina Quinasa , Proteína p53 Supresora de Tumor , Apoptosis , Línea Celular Tumoral , Cisplatino/farmacología , Resistencia a Antineoplásicos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Melanoma/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
4.
Front Immunol ; 12: 782891, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34925364

RESUMEN

Benznidazole (Bzl), the drug of choice in many countries for the treatment of Chagas disease, leads to parasite clearance in the early stages of infection and contributes to immunomodulation. In addition to its parasiticidal effect, Bzl inhibits the NF-κB pathway. In this regard, we have previously described that this occurs through IL-10/STAT3/SOCS3 pathway. PI3K pathway is involved in the regulation of the immune system by inhibiting NF-κB pathway through STAT3. In this work, the participation of PI3K in the immunomodulatory effects of Bzl in cardiac and immune cells, the main targets of Chagas disease, was further studied. For that, we use a murine primary cardiomyocyte culture and a monocyte/macrophage cell line (RAW 264.7), stimulated with LPS in presence of LY294002, an inhibitor of PI3K. Under these conditions, Bzl could neither increase SOCS3 expression nor inhibit the NOS2 mRNA expression and the release of NOx, both in cardiomyocytes and macrophages. Macrophages are crucial in the development of Chronic Chagas Cardiomyopathy. Thus, to deepen our understanding of how Bzl acts, the expression profile of M1-M2 macrophage markers was evaluated. Bzl inhibited the release of NOx (M1 marker) and increased the expression of Arginase I (M2 marker) and a negative correlation was found between them. Besides, LPS increased the expression of pro-inflammatory cytokines. Bzl treatment not only inhibited this effect but also increased the expression of typical M2-macrophage markers like Mannose Receptor, TGF-ß, and VEGF-A. Moreover, Bzl increased the expression of PPAR-γ and PPAR-α, known as key regulators of macrophage polarization. PI3K directly regulates M1-to-M2 macrophage polarization. Since p110δ, catalytic subunit of PI3Kδ, is highly expressed in immune cells, experiments were carried out in presence of CAL-101, a specific inhibitor of this subunit. Under this condition, Bzl could neither increase SOCS3 expression nor inhibit NF-κB pathway. Moreover, Bzl not only failed to inhibit the expression of pro-inflammatory cytokines (M1 markers) but also could not increase M2 markers. Taken together these results demonstrate, for the first time, that the anti-inflammatory effect of Bzl depends on PI3K activity in a cell line of murine macrophages and in primary culture of neonatal cardiomyocytes. Furthermore, Bzl-mediated increase expression of M2-macrophage markers involves the participation of the p110δ catalytic subunit of PI3Kδ.


Asunto(s)
Antiinflamatorios/farmacología , Cardiomiopatía Chagásica/tratamiento farmacológico , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Nitroimidazoles/farmacología , Animales , Animales Recién Nacidos , Antiinflamatorios/uso terapéutico , Cardiomiopatía Chagásica/inmunología , Cromonas/farmacología , Fosfatidilinositol 3-Quinasa Clase I/antagonistas & inhibidores , Modelos Animales de Enfermedad , Femenino , Humanos , Lipopolisacáridos/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Ratones , Morfolinas/farmacología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/inmunología , Miocitos Cardíacos/metabolismo , Nitroimidazoles/uso terapéutico , Cultivo Primario de Células , Células RAW 264.7
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA