Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 299(10): 105256, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37716703

RESUMEN

The glycosyltransferase WaaG in Pseudomonas aeruginosa (PaWaaG) is involved in the synthesis of the core region of lipopolysaccharides. It is a promising target for developing adjuvants that could help in the uptake of antibiotics. Herein, we have determined structures of PaWaaG in complex with the nucleotide-sugars UDP-glucose, UDP-galactose, and UDP-GalNAc. Structural comparison with the homolog from Escherichia coli (EcWaaG) revealed five key differences in the sugar-binding pocket. Solution-state NMR analysis showed that WT PaWaaG specifically hydrolyzes UDP-GalNAc and unlike EcWaaG, does not hydrolyze UDP-glucose. Furthermore, we found that a PaWaaG mutant (Y97F/T208R/N282A/T283A/T285I) designed to resemble the EcWaaG sugar binding site, only hydrolyzed UDP-glucose, underscoring the importance of the identified amino acids in substrate specificity. However, neither WT PaWaaG nor the PaWaaG mutant capable of hydrolyzing UDP-glucose was able to complement an E. coli ΔwaaG strain, indicating that more remains to be uncovered about the function of PaWaaG in vivo. This structural and biochemical information will guide future structure-based drug design efforts targeting PaWaaG.

2.
Biochim Biophys Acta Biomembr ; 1865(8): 184209, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37558175

RESUMEN

WaaG is a glycosyltransferase (GT) involved in the synthesis of the bacterial cell wall, and in Escherichia coli it catalyzes the transfer of a glucose moiety from the donor substrate UDP-glucose onto the nascent lipopolysaccharide (LPS) molecule which when completed constitutes the major component of the bacterium's outermost defenses. Similar to other GTs of the GT-B fold, having two Rossman-like domains connected by a short linker, WaaG is believed to undergo complex inter-domain motions as part of its function to accommodate the nascent LPS and UDP-glucose in the catalytic site located in the cleft between the two domains. As the nascent LPS is bulky and membrane-bound, WaaG is a peripheral membrane protein, adding to the complexity of studying the enzyme in a biologically relevant environment. Using specific 5-fluoro-Trp labelling of native and inserted tryptophans and 19F NMR we herein studied the dynamic interactions of WaaG with lipids using bicelles, and with the donor substrate. Line-shape changes when bicelles are added to WaaG show that the dynamic behavior is altered when binding to the model membrane, while a chemical shift change indicates an altered environment around a tryptophan located in the C-terminal domain of WaaG upon interaction with UDP-glucose or UDP. A lipid-bound paramagnetic probe was used to confirm that the membrane interaction is mediated by a loop region located in the N-terminal domain. Furthermore, the hydrolysis of the donor substrate by WaaG was quantified by 31P NMR.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Lipopolisacáridos , Glicosiltransferasas/química , Conformación Proteica , Glucosa , Uridina Difosfato
3.
J Phys Chem B ; 126(30): 5655-5666, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35880265

RESUMEN

Solution-state NMR can be used to study protein-lipid interactions, in particular, the effect that proteins have on lipids. One drawback is that only small assemblies can be studied, and therefore, fast-tumbling bicelles are commonly used. Bicelles contain a lipid bilayer that is solubilized by detergents. A complication is that they are only stable at high concentrations, exceeding the CMC of the detergent. This issue has previously been addressed by introducing a detergent (Cyclosfos-6) with a substantially lower CMC. Here, we developed a set of bicelles using this detergent for studies of membrane-associated mycobacterial proteins, for example, PimA, a key enzyme for bacterial growth. To mimic the lipid composition of mycobacterial membranes, PI, PG, and PC lipids were used. Diffusion NMR was used to characterize the bicelles, and spin relaxation was used to measure the dynamic properties of the lipids. The results suggest that bicelles are formed, although they are smaller than "conventional" bicelles. Moreover, we studied the effect of MTSL-labeled PimA on bicelles containing PI and PC. The paramagnetic label was shown to have a shallow location in the bicelle, affecting the glycerol backbone of the lipids. We foresee that these bicelles will be useful for detailed studies of protein-lipid interactions.


Asunto(s)
Detergentes , Fosfatidilinositoles , Detergentes/química , Glicosiltransferasas , Membrana Dobles de Lípidos/química , Proteínas de la Membrana/química , Yoduro de Potasio
4.
Biochem Biophys Rep ; 30: 101229, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35198741

RESUMEN

Chitin synthases are vital for growth in certain oomycetes as chitin is an essential component in the cell wall of these species. In Saprolegnia monoica, two chitin synthases have been found, and both contain a Microtubule Interacting and Trafficking (MIT) domain. The MIT domain has been implicated in lipid interaction, which in turn may be of significance for targeting of chitin synthases to the plasma membrane. In this work we have investigated the lipid interacting properties of the MIT domain from chitin synthase 1 in Saprolegnia monoica. We show by fluorescence spectroscopy techniques that the MIT domain interacts preferentially with phosphatidic acid (PA), while it does not interact with phosphatidylglycerol (PG) or phosphatidylcholine (PC). These results strongly suggest that the specific properties of PA are required for membrane interaction of the MIT domain. PA is negatively charged, binds basic side chains with high affinity and its small headgroup gives rise to membrane packing defects that enable intercalation of hydrophobic amino acids. We propose a mode of lipid interaction that involves a combination of basic amino acid residues and Trp residues that anchor the MIT domain specifically to bilayers that contain PA.

5.
BMC Biol ; 19(1): 98, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33971868

RESUMEN

BACKGROUND: Mitochondrial respiration is organized in a series of enzyme complexes in turn forming dynamic supercomplexes. In Saccharomyces cerevisiae (baker's yeast), Cox13 (CoxVIa in mammals) is a conserved peripheral subunit of Complex IV (cytochrome c oxidase, CytcO), localized at the interface of dimeric bovine CytcO, which has been implicated in the regulation of the complex. RESULTS: Here, we report the solution NMR structure of Cox13, which forms a dimer in detergent micelles. Each Cox13 monomer has three short helices (SH), corresponding to disordered regions in X-ray or cryo-EM structures of homologous proteins. Dimer formation is mainly induced by hydrophobic interactions between the transmembrane (TM) helix of each monomer. Furthermore, an analysis of chemical shift changes upon addition of ATP revealed that ATP binds at a conserved region of the C terminus with considerable conformational flexibility. CONCLUSIONS: Together with functional analysis of purified CytcO, we suggest that this ATP interaction is inhibitory of catalytic activity. Our results shed light on the structural flexibility of an important subunit of yeast CytcO and provide structure-based insight into how ATP could regulate mitochondrial respiration.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Adenosina Trifosfato , Animales , Bovinos , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Espectroscopía de Resonancia Magnética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Structure ; 29(3): 275-283.e4, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-32905793

RESUMEN

The Saccharomyces cerevisiae respiratory supercomplex factor 2 (Rcf2) is a 224-residue protein located in the mitochondrial inner membrane where it is involved in the formation of supercomplexes composed of cytochrome bc1 and cytochrome c oxidase. We previously demonstrated that Rcf2 forms a dimer in dodecylphosphocholine micelles, and here we report the solution NMR structure of this Rcf2 dimer. Each Rcf2 monomer has two soluble α helices and five putative transmembrane (TM) α helices, including an unexpectedly charged TM helix at the C terminus, which mediates dimer formation. The NOE contacts indicate the presence of inter-monomer salt bridges and hydrogen bonds at the dimer interface, which stabilize the Rcf2 dimer structure. Moreover, NMR chemical shift change mapping upon lipid titrations as well as molecular dynamics analysis reveal possible structural changes upon embedding Rcf2 into a native lipid environment. Our results contribute to the understanding of respiratory supercomplex formation and regulation.


Asunto(s)
Complejo IV de Transporte de Electrones/química , Proteínas de Saccharomyces cerevisiae/química , Complejo IV de Transporte de Electrones/metabolismo , Lípidos de la Membrana/metabolismo , Simulación de Dinámica Molecular , Conformación Proteica en Hélice alfa , Dominios Proteicos , Multimerización de Proteína , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Biochim Biophys Acta Biomembr ; 1863(2): 183529, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33279512

RESUMEN

The twin-arginine translocase (Tat) mediates the transport of already-folded proteins across membranes in bacteria, plants and archaea. TatA is a small, dynamic subunit of the Tat-system that is believed to be the active component during target protein translocation. TatA is foremost characterized as a bitopic membrane protein, but has also been found to partition into a soluble, oligomeric structure of yet unknown function. To elucidate the interplay between the membrane-bound and soluble forms we have investigated the oligomers formed by Arabidopsis thaliana TatA. We used several biophysical techniques to study the oligomeric structure in solution, the conversion that takes place upon interaction with membrane models of different compositions, and the effect on bilayer integrity upon insertion. Our results demonstrate that in solution TatA oligomerizes into large objects with a high degree of ordered structure. Upon interaction with lipids, conformational changes take place and TatA disintegrates into lower order oligomers. The insertion of TatA into lipid bilayers causes a temporary leakage of small molecules across the bilayer. The disruptive effect on the membrane is dependent on the liposome's negative surface charge density, with more leakage observed for purely zwitterionic bilayers. Overall, our findings indicate that A. thaliana TatA forms oligomers in solution that insert into bilayers, a process that involves reorganization of the protein oligomer.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Membrana Celular , Membrana Dobles de Lípidos , Proteínas de Transporte de Membrana , Multimerización de Proteína , Arabidopsis/química , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo
8.
Biochemistry ; 59(32): 2934-2945, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32786405

RESUMEN

The phosphatidyl-myo-inositol mannosyltransferase A (PimA) is an essential peripheral membrane glycosyltransferase that initiates the biosynthetic pathway of phosphatidyl-myo-inositol mannosides (PIMs), key structural elements and virulence factors of Mycobacterium tuberculosis. PimA undergoes functionally important conformational changes, including (i) α-helix-to-ß-strand and ß-strand-to-α-helix transitions and (ii) an "open-to-closed" motion between the two Rossmann-fold domains, a conformational change that is necessary to generate a catalytically competent active site. In previous work, we established that GDP-Man and GDP stabilize the enzyme and facilitate the switch to a more compact active state. To determine the structural contribution of the mannose ring in such an activation mechanism, we analyzed a series of chemical derivatives, including mannose phosphate (Man-P) and mannose pyrophosphate-ribose (Man-PP-RIB), and additional GDP derivatives, such as pyrophosphate ribose (PP-RIB) and GMP, by the combined use of X-ray crystallography, limited proteolysis, circular dichroism, isothermal titration calorimetry, and small angle X-ray scattering methods. Although the ß-phosphate is present, we found that the mannose ring, covalently attached to neither phosphate (Man-P) nor PP-RIB (Man-PP-RIB), does promote the switch to the active compact form of the enzyme. Therefore, the nucleotide moiety of GDP-Man, and not the sugar ring, facilitates the "open-to-closed" motion, with the ß-phosphate group providing the high-affinity binding to PimA. Altogether, the experimental data contribute to a better understanding of the structural determinants involved in the "open-to-closed" motion not only observed in PimA but also visualized and/or predicted in other glycosyltransfeases. In addition, the experimental data might prove to be useful for the discovery and/or development of PimA and/or glycosyltransferase inhibitors.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Manosiltransferasas/química , Manosiltransferasas/metabolismo , Movimiento , Manosa/metabolismo , Modelos Moleculares , Conformación Proteica
9.
J Biol Chem ; 295(29): 9868-9878, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32434931

RESUMEN

Fold-switch pathways remodel the secondary structure topology of proteins in response to the cellular environment. It is a major challenge to understand the dynamics of these folding processes. Here, we conducted an in-depth analysis of the α-helix-to-ß-strand and ß-strand-to-α-helix transitions and domain motions displayed by the essential mannosyltransferase PimA from mycobacteria. Using 19F NMR, we identified four functionally relevant states of PimA that coexist in dynamic equilibria on millisecond-to-second timescales in solution. We discovered that fold-switching is a slow process, on the order of seconds, whereas domain motions occur simultaneously but are substantially faster, on the order of milliseconds. Strikingly, the addition of substrate accelerated the fold-switching dynamics of PimA. We propose a model in which the fold-switching dynamics constitute a mechanism for PimA activation.


Asunto(s)
Proteínas Bacterianas/química , Manosiltransferasas/química , Simulación de Dinámica Molecular , Mycobacterium smegmatis/enzimología , Pliegue de Proteína , Resonancia Magnética Nuclear Biomolecular
10.
Biochemistry ; 59(8): 999-1009, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32067450

RESUMEN

Galactolipids are characteristic lipids of the photosynthetic membranes. They are highly enriched in the chloroplast and are present in photosystem structures. There are two major types of galactolipids, i.e., monogalactosyldiacylglycerol and digalactosyldiacylglycerol (DGDG) in chloroplastic membranes, which amount to ∼50 and ∼20 mol % of the total chloroplast lipids, respectively. Under phosphate-limiting conditions, the amount of DGDG increases dramatically for rescuing phosphate from phospholipids. In Arabidopsis thaliana, the gene digalactosyldiacylglycerol synthase 2 (DGD2) encodes a membrane-associated glycosyltransferase. The gene expression is highly responsive to phosphate starvation and is significantly upregulated in this case. To understand the molecular mechanism of DGD2, we established a protocol for DGD2 expression and purification in an Escherichia coli-based system. The work involved optimization of the expression condition and the purification protocol and a careful selection of buffer additives. It was found that a removal of around 70 C-terminal residues was necessary to produce a homogeneous monomeric protein sample with high purity, which was highly active. The purified sample was characterized by an activity assay for enzyme kinetics in which a range of membrane mimetics with different lipid compositions were used. The results demonstrate that DGD2 activity is stimulated by the presence of negatively charged lipids, which highlight the importance of the membrane environment in modulating the enzyme's activity. The study also paves way for future biophysical and structural studies of the enzyme.


Asunto(s)
Proteínas de Cloroplastos/química , Galactolípidos/síntesis química , Proteínas de la Membrana/química , Secuencia de Aminoácidos , Arabidopsis/química , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/aislamiento & purificación , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/aislamiento & purificación , Galactosiltransferasas/química , Galactosiltransferasas/genética , Galactosiltransferasas/aislamiento & purificación , Cinética , Membrana Dobles de Lípidos/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/aislamiento & purificación , Alineación de Secuencia , Eliminación de Secuencia , Liposomas Unilamelares/química
11.
FEBS J ; 285(10): 1886-1906, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29654717

RESUMEN

The twin-arginine translocase (Tat) transports folded proteins across the cytoplasmic membrane of prokaryotes and the thylakoid membrane of plant chloroplasts. In Gram-negative bacteria and chloroplasts, the translocon consists of three subunits, TatA, TatB, and TatC, of which TatA is responsible for the actual membrane translocation of the substrate. Herein we report on the structure, dynamics, and lipid interactions of a fully functional C-terminally truncated 'core TatA' from Arabidopsis thaliana using solution-state NMR. Our results show that TatA consists of a short N-terminal transmembrane helix (TMH), a short connecting linker (hinge) and a long region with propensity to form an amphiphilic helix (APH). The dynamics of TatA were characterized using 15 N relaxation NMR in combination with model-free analysis. The TMH has order parameters characteristic of a well-structured helix, the hinge is somewhat less rigid, while the APH has lower order parameters indicating structural flexibility. The TMH is short with a surprisingly low protection from solvent, and only the first part of the APH is protected to some extent. In order to uncover possible differences in TatA's structure and dynamics in detergent compared to in a lipid bilayer, fast-tumbling bicelles and large unilamellar vesicles were used. Results indicate that the helicity of TatA increases in both the TMH and APH in the presence of lipids, and that the N-terminal part of the TMH is significantly more rigid. The results indicate that plant TatA has a significant structural plasticity and a capability to adapt to local environments.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/química , Membrana Dobles de Lípidos , Espectroscopía de Resonancia Magnética/métodos , Micelas , Sistema de Translocación de Arginina Gemela/química , Adaptación Fisiológica , Secuencia de Aminoácidos , Arabidopsis/fisiología , Transporte Biológico , Lípidos/química , Homología de Secuencia de Aminoácido , Solventes/química
12.
Proc Natl Acad Sci U S A ; 115(12): 3048-3053, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29507228

RESUMEN

The Saccharomyces cerevisiae respiratory supercomplex factor 1 (Rcf1) protein is located in the mitochondrial inner membrane where it is involved in formation of supercomplexes composed of respiratory complexes III and IV. We report the solution structure of Rcf1, which forms a dimer in dodecylphosphocholine (DPC) micelles, where each monomer consists of a bundle of five transmembrane (TM) helices and a short flexible soluble helix (SH). Three TM helices are unusually charged and provide the dimerization interface consisting of 10 putative salt bridges, defining a "charge zipper" motif. The dimer structure is supported by molecular dynamics (MD) simulations in DPC, although the simulations show a more dynamic dimer interface than the NMR data. Furthermore, CD and NMR data indicate that Rcf1 undergoes a structural change when reconstituted in liposomes, which is supported by MD data, suggesting that the dimer structure is unstable in a planar membrane environment. Collectively, these data indicate a dynamic monomer-dimer equilibrium. Furthermore, the Rcf1 dimer interacts with cytochrome c, suggesting a role as an electron-transfer bridge between complexes III and IV. The Rcf1 structure will help in understanding its functional roles at a molecular level.


Asunto(s)
Complejo IV de Transporte de Electrones/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Sitios de Unión , Simulación por Computador , Citocromos c/química , Citocromos c/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Escherichia coli/metabolismo , Lípidos/química , Espectroscopía de Resonancia Magnética , Modelos Químicos , Modelos Moleculares , Conformación Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Biochim Biophys Acta Biomembr ; 1860(3): 683-690, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29225173

RESUMEN

Monotopic glycosyltransferases (GTs) interact with membranes via electrostatic interactions. The N-terminal domain is permanently anchored to the membrane while the membrane interaction of the C-terminal domain is believed to be weaker so that it undergoes a functionally relevant conformational change upon donor or acceptor binding. Here, we studied the applicability of this model to the glycosyltransferase WaaG. WaaG is involved in the synthesis of lipopolysaccharides (LPS) in Gram-negative bacteria and was previously categorized as a monotopic GT. We analyzed the binding of WaaG to membranes by stopped-flow fluorescence and NMR diffusion experiments. We find that electrostatic interactions are required to bind WaaG to membranes while mere hydrophobic interactions are not sufficient. WaaG senses the membrane's surface charge density but there is no preferential binding to specific anionic lipids. However, the binding is weaker than expected for monotopic GTs but similar to peripheral GTs. Therefore, WaaG may be a peripheral GT and this could be of functional relevance in vivo since LPS synthesis occurs only when WaaG is membrane-bound. We could not observe a C-terminal domain movement under our experimental conditions.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Glucosiltransferasas/metabolismo , Lípidos de la Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Sustitución de Aminoácidos , Catálisis , Difusión , Proteínas de Escherichia coli/genética , Glucosiltransferasas/genética , Membrana Dobles de Lípidos , Modelos Moleculares , Mutación Puntual , Unión Proteica , Conformación Proteica , Dominios Proteicos , Proteínas Recombinantes de Fusión/metabolismo , Electricidad Estática
14.
Chembiochem ; 19(5): 444-447, 2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-29240987

RESUMEN

The Saccharomyces cerevisiae mitochondrial respiratory supercomplex factor 2 (Rcf2) plays a role in assembly of supercomplexes composed of cytochrome bc1 (complex III) and cytochrome c oxidase (complex IV). We expressed the Rcf2 protein in Escherichia coli, refolded it, and reconstituted it into dodecylphosphocholine (DPC) micelles. The structural properties of Rcf2 were studied by solution NMR, and near complete backbone assignment of Rcf2 was achieved. The secondary structure of Rcf2 contains seven helices, of which five are putative transmembrane (TM) helices, including, unexpectedly, a region formed by a charged 20-residue helix at the C terminus. Further studies demonstrated that Rcf2 forms a dimer, and the charged TM helix is involved in this dimer formation. Our results provide a basis for understanding the role of this assembly/regulatory factor in supercomplex formation and function.


Asunto(s)
Complejo IV de Transporte de Electrones/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Detergentes/química , Micelas , Resonancia Magnética Nuclear Biomolecular , Multimerización de Proteína , Estructura Secundaria de Proteína , Saccharomyces cerevisiae/citología
15.
Biochim Biophys Acta Biomembr ; 1859(11): 2181-2192, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28803731

RESUMEN

The immunity proteins against pore-forming colicins represent a family of integral membrane proteins that reside in the inner membrane of producing cells. Cai, the colicin A immunity protein, was characterized here in detergent micelles by circular dichroism (CD), size exclusion chromatography, chemical cross-linking, nuclear magnetic resonance (NMR) spectroscopy, cysteine accessibility, and colicin A binding in detergent micelles. Bile-salt derivatives induced extensive protein polymerization that precluded further investigation. The physical characterization of detergent-solubilized protein indicates that phosphate-containing detergents are more efficient in extracting, solubilizing and maintaining Cai in a monomeric state. Yet, their capacity to ensure protein activity, reconstitution, helix packing, and high-quality NMR spectra was inferior to that of milder detergents. Solvent ionic strength and composition greatly modified the solubilizing capacity of milder detergents. Most importantly, binding to the colicin A pore-forming domain (pf-ColA) occurred almost exclusively in sugar-derived detergents. The relative performance of the different detergents in each experiment depends on their impact not only on Cai structure, solubility and oligomerization state, but also on other reaction components and technical aspects. Thus, proteoliposomes were best obtained from protein in LDAO micelles, possibly also due to indirect effects on the lipidic bilayer. The compatibility of a detergent with Cai/pf-ColA complex formation is influenced by its effect on the conformational landscape of each protein, where detergent-mediated pf-ColA denaturation could also lead to negative results. The NMR spectra were greatly affected by the solubility, monodispersity, fold and dynamics of the protein-detergent complexes, and none of those tested here provided NMR spectra of sufficient quality to allow for peak assignment. Cai function could be proven in alkyl glycosides and not in those detergents that afforded the best solubility, reconstitution efficiency or spectral quality indicating that these criteria cannot be taken as unambiguous proof of nativeness without the support of direct activity measurements.


Asunto(s)
Colicinas/química , Colicinas/aislamiento & purificación , Detergentes/química , Micelas , Secuencia de Aminoácidos , Cromatografía en Gel , Dicroismo Circular , Detergentes/farmacología , Escherichia coli/química , Membrana Dobles de Lípidos/química , Espectroscopía de Resonancia Magnética , Análisis de Secuencia de Proteína , Solubilidad
16.
J Phys Chem B ; 121(32): 7660-7670, 2017 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-28707890

RESUMEN

Myriads of biological processes occur in or at cellular lipid membranes. Knowledge about the localization of proteins, lipids, and other molecules within biological membranes is thus crucial for the understanding of such processes. Here, we present a method to determine the immersion depths of lipid carbon atoms in membranes by paramagnetic relaxation enhancement (PRE) caused by the presence of doxylated lipids. As membrane mimetics, we employ small isotropic bicelles made of synthetic lipids and of natural Escherichia coli phospholipid extract. Bicelles are particularly suitable for solution state NMR since they maintain a lipid bilayer while they are at the same time amenable to solution state NMR experiments. PREs were measured in the presence of different doxylated lipids with the nitroxide radical located in the headgroup and at various positions in the acyl chain. Theoretical PREs were calculated assuming a simple bicelle model using the Solomon-Bloembergen equations. Immersion depths of the lipid carbon atoms were obtained by a least-squares fit of the theoretical to the experimental PREs. The carbon immersion depths correspond well to results obtained by other methods and differences do not exceed 3-5 Å. This means that the method presented here provides sufficient resolution to distinguish the localization of carbons in different regions of the lipid bilayer, despite considerable simplifications of the underlying theory. These simplifications include a simple form of the spectral density function, which we find is sufficient to reliably determine immersion depths. A more complicated spectral density function that includes bicelle, lipid, and local motions may only improve the results if its parametrization is good enough. The approach presented here may be extended to the determination of protein localization in membranes employing realistic membrane mimetics like the bicelles made of E. coli phospholipid extract used here.


Asunto(s)
Membrana Dobles de Lípidos/química , Fosfolípidos/química , Carbono/química , Dimiristoilfosfatidilcolina/química , Escherichia coli/metabolismo , Magnetismo , Simulación de Dinámica Molecular , Difracción de Neutrones , Resonancia Magnética Nuclear Biomolecular , Fosfatidilgliceroles/química , Fosfolípidos/aislamiento & purificación , Dispersión del Ángulo Pequeño , Difracción de Rayos X
17.
Magn Reson Chem ; 55(5): 395-404, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-26662467

RESUMEN

Small isotropic bicelles are versatile membrane mimetics, which, in contrast to micelles, provide a lipid bilayer and are at the same time suitable for solution-state NMR studies. The lipid composition of the bilayer is flexible allowing for incorporation of various head groups and acyl chain types. In bicelles, lipids are solubilized by detergents, which are localized in the rim of the disk-shaped lipid bilayer. Bicelles have been characterized by a broad array of biophysical methods, pulsed-field gradient NMR (PFG NMR) being one of them. PFG NMR can readily be used to measure diffusion coefficients of macromolecules. It is thus employed to characterize bicelle size and morphology. Even more importantly, PFG NMR can be used to study the degree of protein association to membranes. Here, we present the advances that have been made in producing small, fast-tumbling isotropic bicelles from a variety of lipids and detergents, together with insights on the morphology of such mixtures gained from PFG NMR. Furthermore, we review approaches to study protein-membrane interaction by PFG NMR. Copyright © 2015 John Wiley & Sons, Ltd.


Asunto(s)
Membrana Dobles de Lípidos/química , Espectroscopía de Resonancia Magnética/métodos , Difusión , Lípidos de la Membrana/química , Proteínas de la Membrana/química , Micelas , Unión Proteica , Propiedades de Superficie
18.
Biochemistry ; 55(49): 6776-6786, 2016 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-27951648

RESUMEN

Glycosyltransferases (GTs) are responsible for regulating the membrane composition of plants. The synthesis of one of the main lipids in the membrane, the galactolipid digalactosyldiacylglycerol, is regulated by the enzyme digalactosyldiacylglycerol synthase 2 (atDGD2) under starving conditions, such as phosphate shortage. The enzyme belongs to the GT-B fold, characterized by two ß/α/ß Rossmann domains that are connected by a flexible linker. atDGD2 has previously been shown to attach to lipid membranes by the N-terminal domain via interactions with negatively charged lipids. The role of the C-terminal domain in the membrane interaction is, however, not known. Here we have used a combination of in silico prediction methods and biophysical experimental techniques to shed light on the membrane interacting properties of the C-terminal domain. Our results demonstrate that there is an amphipathic sequence, corresponding to residues V240-E258, that interacts with lipids in a charge-dependent way. A second sequence was identified as being potentially important, with a high charge density, but no amphipathic character. The features of the plant atDGD2 observed here are similar in prokaryotic glycosyltransferases. On the basis of our results, and by analogy to other glycosyltransferases, we propose that atDGD2 interacts with the membrane through the N-terminus and with parts of the C-terminus acting as a switch, allowing for a dynamic interaction with the membrane.


Asunto(s)
Arabidopsis/enzimología , Glicosiltransferasas/metabolismo , Membrana Celular/metabolismo , Dicroismo Circular , Glicosiltransferasas/química , Resonancia Magnética Nuclear Biomolecular , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta
19.
FEBS J ; 283(16): 3072-88, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27363606

RESUMEN

UNLABELLED: Chitin synthases (Chs) are responsible for the synthesis of chitin, a key structural cell wall polysaccharide in many organisms. They are essential for growth in certain oomycete species, some of which are pathogenic to diverse higher organisms. Recently, a microtubule interacting and trafficking (MIT) domain, which is not found in any fungal Chs, has been identified in some oomycete Chs proteins. Based on experimental data relating to the binding specificity of other eukaryotic MIT domains, there was speculation that this domain may be involved in the intracellular trafficking of Chs proteins. However, there is currently no evidence for this or any other function for the MIT domain in these enzymes. To attempt to elucidate their function, MIT domains from two Chs enzymes from the oomycete Saprolegnia monoica were cloned, expressed, and characterized. Both were shown to interact strongly with the plasma membrane component, phosphatidic acid, and to have additional putative interactions with proteins thought to be involved in protein transport and localization. Aiding our understanding of these data, the structure of the first MIT domain from a carbohydrate-active enzyme (MIT1) was solved by NMR, and a model structure of a second MIT domain (MIT2) was built by homology modeling. Our results suggest a potential function for these MIT domains in the intracellular transport and/or regulation of Chs enzymes in the oomycetes. DATABASE: Structural data are available in the Biological Magnetic Resonance Bank (BMRB) database under the accession number 19987 and the PDB database under the accession number 2MPK.


Asunto(s)
Quitina Sintasa/química , Quitina Sintasa/metabolismo , Saprolegnia/enzimología , Complejo 3 de Proteína Adaptadora/metabolismo , Dicroismo Circular , Microtúbulos/metabolismo , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Fosfolípidos/metabolismo , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas , Homología Estructural de Proteína
20.
Biochim Biophys Acta ; 1858(9): 2097-2105, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27317394

RESUMEN

Solution-state NMR requires small membrane mimetic systems to allow for acquiring high-resolution data. At the same time these mimetics should faithfully mimic biological membranes. Here we characterized two novel fast-tumbling bicelle systems with lipids from two Escherichia coli strains. While strain 1 (AD93WT) contains a characteristic E. coli lipid composition, strain 2 (AD93-PE) is not capable of synthesizing the most abundant lipid in E. coli, phosphatidylethanolamine. The lipid and acyl chain compositions were characterized by (31)P and (13)C NMR. Depending on growth temperature and phase, the lipid composition varies substantially, which means that the bicelle composition can be tuned by using lipids from cells grown at different temperatures and growth phases. The hydrodynamic radii of the bicelles were determined from translational diffusion coefficients and NMR spin relaxation was measured to investigate lipid properties in the bicelles. We find that the lipid dynamics are unaffected by variations in lipid composition, suggesting that the bilayer is in a fluid phase under all conditions investigated here. Backbone glycerol carbons are the most rigid positions in all lipids, while head-group carbons and the first carbons of the acyl chain are somewhat more flexible. The flexibility increases down the acyl chain to almost unrestricted motion at its end. Carbons in double bonds and cyclopropane moieties are substantially restricted in their motional freedom. The bicelle systems characterized here are thus found to faithfully mimic E. coli inner membranes and are therefore useful for membrane interaction studies of proteins with E. coli inner membranes by solution-state NMR.


Asunto(s)
Escherichia coli/química , Lípidos de la Membrana/química , Micelas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...