Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Genet ; 56(3): 383-394, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38291334

RESUMEN

Brain region-specific degeneration and somatic expansions of the mutant Huntingtin (mHTT) CAG tract are key features of Huntington's disease (HD). However, the relationships among CAG expansions, death of specific cell types and molecular events associated with these processes are not established. Here, we used fluorescence-activated nuclear sorting (FANS) and deep molecular profiling to gain insight into the properties of cell types of the human striatum and cerebellum in HD and control donors. CAG expansions arise at mHTT in striatal medium spiny neurons (MSNs), cholinergic interneurons and cerebellar Purkinje neurons, and at mutant ATXN3 in MSNs from SCA3 donors. CAG expansions in MSNs are associated with higher levels of MSH2 and MSH3 (forming MutSß), which can inhibit nucleolytic excision of CAG slip-outs by FAN1. Our data support a model in which CAG expansions are necessary but may not be sufficient for cell death and identify transcriptional changes associated with somatic CAG expansions and striatal toxicity.


Asunto(s)
Cuerpo Estriado , Enfermedad de Huntington , Humanos , Animales , Cerebelo/metabolismo , Enfermedad de Huntington/genética , Modelos Animales de Enfermedad
2.
Neuron ; 112(6): 924-941.e10, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38237588

RESUMEN

The properties of the cell types that are selectively vulnerable in Huntington's disease (HD) cortex, the nature of somatic CAG expansions of mHTT in these cells, and their importance in CNS circuitry have not been delineated. Here, we employed serial fluorescence-activated nuclear sorting (sFANS), deep molecular profiling, and single-nucleus RNA sequencing (snRNA-seq) of motor-cortex samples from thirteen predominantly early stage, clinically diagnosed HD donors and selected samples from cingulate, visual, insular, and prefrontal cortices to demonstrate loss of layer 5a pyramidal neurons in HD. Extensive mHTT CAG expansions occur in vulnerable layer 5a pyramidal cells, and in Betz cells, layers 6a and 6b neurons that are resilient in HD. Retrograde tracing experiments in macaque brains identify layer 5a neurons as corticostriatal pyramidal cells. We propose that enhanced somatic mHTT CAG expansion and altered synaptic function act together to cause corticostriatal disconnection and selective neuronal vulnerability in HD cerebral cortex.


Asunto(s)
Enfermedad de Huntington , Animales , Enfermedad de Huntington/metabolismo , Neuronas/metabolismo , Células Piramidales/metabolismo , Corteza Cerebral/metabolismo , Núcleo Solitario/metabolismo , Modelos Animales de Enfermedad , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo
3.
Acta Neuropathol Commun ; 12(1): 10, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38229173

RESUMEN

Mesencephalic astrocyte-derived neurotrophic factor (MANF) has cytoprotective effects on various injuries, including cerebral ischemia, and it can promote recovery even when delivered intracranially several days after ischemic stroke. In the uninjured rodent brain, MANF protein is expressed almost exclusively in neurons, but post-ischemic MANF expression has not been characterized. We aimed to investigate how endogenous cerebral MANF protein expression evolves in infarcted human brains and rodent ischemic stroke models. During infarct progression, the cerebral MANF expression pattern both in human and rat brains shifted drastically from neurons to expression in inflammatory cells. Intense MANF immunoreactivity took place in phagocytic microglia/macrophages in the ischemic territory, peaking at two weeks post-stroke in human and one-week post-stroke in rat ischemic cortex. Using double immunofluorescence and mice lacking MANF gene and protein from neuronal stem cells, neurons, astrocytes, and oligodendrocytes, we verified that MANF expression was induced in microglia/macrophage cells in the ischemic hemisphere. Embarking on the drastic expression transition towards inflammatory cells and the impact of blood-borne inflammation in stroke, we hypothesized that exogenously delivered MANF protein can modulate tissue recovery processes. In an attempt to enhance recovery, we designed a set of proof-of-concept studies using systemic delivery of recombinant MANF in a rat model of cortical ischemic stroke. Intranasal recombinant MANF treatment decreased infarct volume and reduced the severity of neurological deficits. Intravenous recombinant MANF treatment decreased the levels of pro-inflammatory cytokines and increased the levels of anti-inflammatory cytokine IL-10 in the infarcted cortex one-day post-stroke. In conclusion, MANF protein expression is induced in activated microglia/macrophage cells in infarcted human and rodent brains, and this could implicate MANF's involvement in the regulation of post-stroke inflammation in patients and experimental animals. Moreover, systemic delivery of recombinant MANF shows promising immunomodulatory effects and therapeutic potential in experimental ischemic stroke.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Ratas , Ratones , Animales , Accidente Cerebrovascular Isquémico/metabolismo , Ratas Sprague-Dawley , Encéfalo/metabolismo , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/metabolismo , Factores de Crecimiento Nervioso/uso terapéutico , Accidente Cerebrovascular/metabolismo , Infarto Cerebral/metabolismo , Inflamación/metabolismo
4.
Mol Pain ; 19: 17448069231183902, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37285551

RESUMEN

Background: Opioids are efficacious and safe analgesic drugs in short-term use for acute pain but chronic use can lead to tolerance and dependence. Opioid-induced microglial activation may contribute to the development of tolerance and this process may differ between males and females. A link is suggested between this microglial activation and inflammation, disturbances of circadian rhythms, and neurotoxic effects. We set out to further delineate the effects of chronic morphine on pain behaviour, microglial and neuronal staining, and the transcriptome of spinal microglia, to better understand the role of microglia in the consequences of long-term high-dose opioid administration. Experimental Approach: In two experiments, we administered increasing subcutaneous doses of morphine hydrochloride or saline to male and female rats. Thermal nociception was assessed with the tail flick and hot plate tests. In Experiment I, spinal cord (SC) samples were prepared for immunohistochemical staining for microglial and neuronal markers. In Experiment II, the transcriptome of microglia from the lumbar SC was analysed. Key Results: Female and male rats had similar antinociceptive responses to morphine and developed similar antinociceptive tolerance to thermal stimuli following chronic increasing high doses of s.c. morphine. The area of microglial IBA1-staining in SC decreased after 2 weeks of morphine administration in both sexes. Following morphine treatment, the differentially expressed genes identified in the microglial transcriptome included ones related to the circadian rhythm, apoptosis, and immune system processes. Conclusions: Female and male rats showed similar pain behaviour following chronic high doses of morphine. This was associated with decreased staining of spinal microglia, suggesting either decreased activation or apoptosis. High-dose morphine administration also associated with several changes in gene expression in SC microglia, e.g., those related to the circadian rhythm (Per2, Per3, Dbp). These changes should be considered in the clinical consequences of long-term high-dose administration of opioids.


Asunto(s)
Analgésicos Opioides , Morfina , Ratas , Masculino , Femenino , Animales , Morfina/uso terapéutico , Analgésicos Opioides/farmacología , Analgésicos Opioides/uso terapéutico , Microglía , Transcriptoma/genética , Analgésicos/farmacología , Dolor/metabolismo , Médula Espinal/metabolismo
5.
bioRxiv ; 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37333326

RESUMEN

Brain region-specific degeneration and somatic expansions of the mutant Huntingtin (mHTT) CAG tract are key features of Huntington's disease (HD). However, the relationships between CAG expansions, death of specific cell types, and molecular events associated with these processes are not established. Here we employed fluorescence-activated nuclear sorting (FANS) and deep molecular profiling to gain insight into the properties of cell types of the human striatum and cerebellum in HD and control donors. CAG expansions arise in striatal medium spiny neurons (MSNs) and cholinergic interneurons, in cerebellar Purkinje neurons, and at mATXN3 in MSNs from SCA3 donors. CAG expansions in MSNs are associated with higher levels of MSH2 and MSH3 (forming MutSß), which can inhibit nucleolytic excision of CAG slip-outs by FAN1 in a concentration-dependent manner. Our data indicate that ongoing CAG expansions are not sufficient for cell death, and identify transcriptional changes associated with somatic CAG expansions and striatal toxicity.

6.
bioRxiv ; 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37162977

RESUMEN

The properties of the cell types that are selectively vulnerable in Huntington's disease (HD) cortex, the nature of somatic CAG expansions of mHTT in these cells, and their importance in CNS circuitry have not been delineated. Here we employed serial fluorescence activated nuclear sorting (sFANS), deep molecular profiling, and single nucleus RNA sequencing (snRNAseq) to demonstrate that layer 5a pyramidal neurons are vulnerable in primary motor cortex and other cortical areas of HD donors. Extensive mHTT -CAG expansions occur in vulnerable layer 5a pyramidal cells, and in Betz cells, layer 6a, layer 6b neurons that are resilient in HD. Retrograde tracing experiments in macaque brains identify the vulnerable layer 5a neurons as corticostriatal pyramidal cells. We propose that enhanced somatic mHTT -CAG expansion and altered synaptic function act together to cause corticostriatal disconnection and selective neuronal vulnerability in the HD cerebral cortex.

7.
J Neurosci Res ; 100(1): 329-338, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-32459013

RESUMEN

Opioids are effective analgesics in the management of severe pain. However, tolerance, leading to dose escalation and adverse effects are significant limiting factors in their use. The role of peripheral opioid receptors in analgesia has been discussed especially under inflammatory conditions. The results from pharmacological and conditional knockout studies together do not provide a clear picture of the contribution of peripheral opioid receptors on antinociceptive tolerance and this needs to be evaluated. Therefore, we studied whether the peripherally restricted opioid receptor antagonist, methylnaltrexone (MNTX), could prevent morphine tolerance without attenuating the antinociceptive effect of morphine. Male Sprague-Dawley rats were treated for 7 days with increasing subcutaneous doses of morphine (5-30 mg/kg) and were coadministered saline, MNTX (0.5 or 2 mg/kg), or naltrexone (NTX; 2 mg/kg). Nociception was assessed with tail-flick, hotplate, and von Frey tests. Morphine, MNTX, and NTX concentrations in the plasma, brain, and spinal cord were measured by liquid chromatography-tandem mass spectrometry. In acute coadministration, NTX, but not MNTX, abolished the acute antinociceptive effects of morphine in all nociceptive tests. The antinociceptive tolerance after repeated morphine administration was also prevented by NTX but not by MNTX. MNTX penetrated to the spinal cord and the brain to some extent after repeated administration. The results do not support the use of MNTX for preventing opioid tolerance and also suggest that morphine tolerance is mediated by central rather than peripheral opioid receptors in the rat.


Asunto(s)
Morfina , Naltrexona , Analgésicos Opioides/farmacología , Animales , Relación Dosis-Respuesta a Droga , Tolerancia a Medicamentos , Masculino , Morfina/farmacología , Naltrexona/análogos & derivados , Naltrexona/farmacología , Antagonistas de Narcóticos/farmacología , Compuestos de Amonio Cuaternario , Ratas , Ratas Sprague-Dawley , Receptores Opioides , Receptores Opioides mu
8.
Eur J Pharm Sci ; 154: 105493, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32730846

RESUMEN

Toll-like receptor 4 (TLR4) recognizes various endogenous and microbial ligands and is an essential part in the innate immune system. TLR4 signaling initiates transcription factor NF-κB and production of proinflammatory cytokines. TLR4 contributes to the development or progression of various diseases including stroke, neuropathic pain, multiple sclerosis, rheumatoid arthritis and cancer, and better therapeutics are currently sought for these conditions. In this study, a library of 140 000 compounds was virtually screened and a resulting hit-list of 1000 compounds was tested using a cellular reporter system. The topoisomerase II inhibitor mitoxantrone and its analogues pixantrone and mitoxantrone (2-hydroxyethyl)piperazine were identified as inhibitors of TLR4 and NF-κB activation. Mitoxantrone was shown to bind directly to the TLR4, and pixantrone and mitoxantrone (2-hydroxyethyl)piperazine were shown to inhibit the production of proinflammatory cytokines such as tumor necrosis factor alpha (TNFα) in primary microglia. The inhibitory effect on NF-κB activation or on TNFα production was not mediated through cytotoxity at ≤ 1 µM concentration for pixantrone and mitoxantrone (2-hydroxyethyl)piperazine treated cells, as assessed by ATP counts. This study thus identifies a new mechanism of action for mitoxantrone, pixantrone, and mitoxantrone (2-hydroxyethyl)piperazine through the TLR4.


Asunto(s)
Isoquinolinas , FN-kappa B , Piperazina , Receptor Toll-Like 4 , Isoquinolinas/farmacología , Microglía , Mitoxantrona/farmacología , FN-kappa B/efectos de los fármacos , Piperazina/farmacología , Receptor Toll-Like 4/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo
9.
Exp Neurol ; 329: 113288, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32229226

RESUMEN

The peri-infarct region after ischemic stroke is the anatomical location for many of the endogenous recovery processes; however, -the molecular events in the peri-infarct region remain poorly characterized. In this study, we examine the molecular profile of the peri-infarct region on post-stroke day four, a time when reparative processes are ongoing. We used a multiomics approach, involving RNA sequencing, and mass spectrometry-based proteomics and metabolomics to characterize molecular changes in the peri-infarct region. We also took advantage of our previously developed method to express transgenes in the peri-infarct region where self-complementary adeno-associated virus (AAV) vectors were injected into the brain parenchyma on post-stroke day 2. We have previously used this method to show that mesencephalic astrocyte-derived neurotrophic factor (MANF) enhances functional recovery from stroke and recruits phagocytic cells to the peri-infarct region. Here, we first analyzed the effects of stroke to the peri-infarct region on post-stroke day 4 in comparison to sham-operated animals, finding that strokeinduced changes in 3345 transcripts, 341 proteins, and 88 metabolites. We found that after stroke, genes related to inflammation, proliferation, apoptosis, and regeneration were upregulated, whereas genes encoding neuroactive ligand receptors and calcium-binding proteins were downregulated. In proteomics, we detected upregulation of proteins related to protein synthesis and downregulation of neuronal proteins. Metabolomic studies indicated that in after stroke tissue there is an increase in saccharides, sugar phosphates, ceramides and free fatty acids and a decrease of adenine, hypoxantine, adenosine and guanosine. We then compared the effects of post-stroke delivery of AAV1-MANF to AAV1-eGFP (enhanced green fluorescent protein). MANF administration increased the expression of 77 genes, most of which were related to immune response. In proteomics, MANF administration reduced S100A8 and S100A9 protein levels. In metabolomics, no significant differences between MANF and eGFP treatment were detected, but relative to sham surgery group, most of the changes in lipids were significant in the AAV-eGFP group only. This work describes the molecular profile of the peri-infarct region during recovery from ischemic stroke, and establishes a resource for further stroke studies. These results provide further support for parenchymal MANF as a modulator of phagocytic function.


Asunto(s)
Infarto Cerebral/genética , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/metabolismo , Proteómica/métodos , Accidente Cerebrovascular/genética , Transcriptoma/genética , Animales , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Infarto Cerebral/metabolismo , Infarto Cerebral/patología , Técnicas de Transferencia de Gen , Masculino , Metabolómica/métodos , Factores de Crecimiento Nervioso/administración & dosificación , Ratas , Ratas Sprague-Dawley , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología , Factores de Tiempo
10.
Front Neurosci ; 13: 590, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31244598

RESUMEN

Cerebral dopamine neurotrophic factor (CDNF) has shown therapeutic potential in rodent and non-human primate models of Parkinson's disease by protecting the dopamine neurons from degeneration and even restoring their phenotype and function. Previously, neurorestorative efficacy of CDNF in the 6-hydroxydopamine (6-OHDA) model of Parkinson's disease as well as diffusion of the protein in the striatum (STR) has been demonstrated and studied. Here, experiments were performed to characterize the diffusion and transport of supra-nigral CDNF in non-lesioned rats. We injected recombinant human CDNF to the substantia nigra (SN) of naïve male Wistar rats and analyzed the brains 2, 6, and 24 h after injections. We performed immunohistochemical stainings using an antibody specific to human CDNF and radioactivity measurements after injecting iodinated CDNF. Unlike the previously reported striatonigral retrograde transport seen after striatal injection, active anterograde transport of CDNF to the STR could not be detected after nigral injection. There was, however, clear diffusion of CDNF to the brain areas surrounding the SN, and CDNF colocalized with tyrosine hydroxylase (TH)-positive neurons. Overall, our results provide insight on how CDNF injected to the SN may act in this region of the brain.

11.
Sci Adv ; 4(5): eaap8957, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29806020

RESUMEN

Stroke is the most common cause of adult disability in developed countries, largely because spontaneous recovery is often incomplete, and no pharmacological means to hasten the recovery exist. It was recently shown that mesencephalic astrocyte-derived neurotrophic factor (MANF) induces alternative or M2 activation of immune cells after retinal damage in both fruit fly and mouse and mediates retinal repair. Therefore, we set out to study whether poststroke MANF administration would enhance brain tissue repair and affect behavioral recovery of rats after cerebral ischemic injury. We used the distal middle cerebral artery occlusion (dMCAo) model of ischemia-reperfusion injury and administered MANF either as a recombinant protein or via adeno-associated viral (AAV) vector. We discovered that, when MANF was administered to the peri-infarct region 2 or 3 days after stroke, it promoted functional recovery of the animals without affecting the lesion volume. Further, AAV7-MANF treatment transiently increased the number of phagocytic macrophages in the subcortical peri-infarct regions. In addition, the analysis of knockout mice revealed the neuroprotective effects of endogenous MANF against ischemic injury, although endogenous MANF had no effect on immune cell-related gene expression. The beneficial effect of MANF treatment on the reversal of stroke-induced behavioral deficits implies that MANF-based therapies could be used for the repair of brain tissue after stroke.


Asunto(s)
Astrocitos/metabolismo , Factores de Crecimiento Nervioso/genética , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular/metabolismo , Animales , Conducta Animal , Isquemia Encefálica/complicaciones , Dependovirus/genética , Modelos Animales de Enfermedad , Expresión Génica , Vectores Genéticos/genética , Humanos , Imagen por Resonancia Magnética , Masculino , Factores de Crecimiento Nervioso/metabolismo , Ratas , Accidente Cerebrovascular/diagnóstico , Accidente Cerebrovascular/etiología , Transducción Genética , Transgenes
12.
eNeuro ; 5(2)2018.
Artículo en Inglés | MEDLINE | ID: mdl-29766045

RESUMEN

Ischemic stroke is the leading cause of disability, and effective therapeutic strategies are needed to promote complete recovery. Neuroinflammation plays a significant role in stroke pathophysiology, and there is limited understanding of how it affects recovery. The aim of this study was to characterize the spatiotemporal expression profile of microglial activation and whether dampening microglial/macrophage activation post-stroke facilitates the recovery. For dampening microglial/macrophage activation, we chose intranasal administration of naloxone, a drug that is already in clinical use for opioid overdose and is known to decrease microglia/macrophage activation. We characterized the temporal progression of microglia/macrophage activation following cortical ischemic injury in rat and found the peak activation in cortex 7 d post-stroke. Unexpectedly, there was a chronic expression of phagocytic cells in the thalamus associated with neuronal loss. (+)-Naloxone, an enantiomer that reduces microglial activation without antagonizing opioid receptors, was administered intranasally starting 1 d post-stroke and continuing for 7 d. (+)-Naloxone treatment decreased microglia/macrophage activation in the striatum and thalamus, promoted behavioral recovery during the 14-d monitoring period, and reduced neuronal death in the lesioned cortex and ipsilateral thalamus. Our results are the first to show that post-stroke intranasal (+)-naloxone administration promotes short-term functional recovery and reduces microglia/macrophage activation. Therefore, (+)-naloxone is a promising drug for the treatment of ischemic stroke, and further studies should be conducted.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Corteza Cerebral/efectos de los fármacos , Cuerpo Estriado/efectos de los fármacos , Activación de Macrófagos/efectos de los fármacos , Microglía/efectos de los fármacos , Naloxona/farmacología , Antagonistas de Narcóticos/farmacología , Accidente Cerebrovascular/tratamiento farmacológico , Tálamo/efectos de los fármacos , Administración Intranasal , Animales , Conducta Animal/efectos de los fármacos , Modelos Animales de Enfermedad , Naloxona/administración & dosificación , Antagonistas de Narcóticos/administración & dosificación , Ratas , Ratas Sprague-Dawley
13.
Eur J Med Chem ; 151: 495-507, 2018 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-29649744

RESUMEN

Despite extensive years of research, the direct oxidation of the 7,8-double bond of opioids has so far received little attention and knowledge about the effects of this modification on activity at the different opioid receptors is scarce. We herein report that potassium permanganate supported on iron(II) sulfate heptahydrate can be used as a convenient oxidant in the one-step, heterogeneous conversion of Δ7,8-opioids to the corresponding 7ß-hydroxy-8-ketones. Details of the reaction mechanism are given and the effects of the substituent at position 6 of several opioids on the reaction outcome is discussed. The opioid hydroxy ketones prepared are antagonists at the mu- and delta-opioid receptors. Docking simulations and detailed structure-activity analysis revealed that the presence of the 7ß-hydroxy-8-ketone functionality in the prepared compounds can be used to gain activity towards the delta opioid receptor. The 7ß-hydroxy-8-ketones prepared with this method can also be regarded as versatile intermediates for the synthesis of other opioids of interest.


Asunto(s)
Analgésicos Opioides/química , Analgésicos Opioides/farmacología , Antagonistas de Narcóticos/química , Antagonistas de Narcóticos/farmacología , Receptores Opioides delta/antagonistas & inhibidores , Receptores Opioides mu/antagonistas & inhibidores , Analgésicos Opioides/síntesis química , Células HEK293 , Humanos , Cetonas/síntesis química , Cetonas/química , Cetonas/farmacología , Modelos Moleculares , Antagonistas de Narcóticos/síntesis química , Receptores Opioides delta/metabolismo , Receptores Opioides mu/metabolismo , Relación Estructura-Actividad
14.
Neuroscience ; 375: 10-24, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29421434

RESUMEN

Development of tolerance is a well known pharmacological characteristic of opioids and a major clinical problem. In addition to the known neuronal mechanisms of opioid tolerance, activation of glia has emerged as a potentially significant new mechanism. We studied activation of microglia and astrocytes in morphine tolerance and opioid-induced hyperalgesia in rats using immunohistochemistry, flow cytometry and RNA sequencing in spinal- and supraspinal regions. Chronic morphine treatment that induced tolerance and hyperalgesia also increased immunoreactivity of spinal microglia in the dorsal and ventral horns. Flow cytometry demonstrated that morphine treatment increased the proportion of M2-polarized spinal microglia, but failed to impact the number or the proportion of M1-polarized microglia. In the transcriptome of microglial cells isolated from the spinal cord (SC), morphine treatment increased transcripts related to cell activation and defense response. In the studied brain regions, no activation of microglia or astrocytes was detected by immunohistochemistry, except for a decrease in the number of microglial cells in the substantia nigra. In flow cytometry, morphine caused a decrease in the number of microglial cells in the medulla, but otherwise no change was detected for the count or the proportion of M1- and M2-polarized microglia in the medulla or sensory cortex. No evidence for the activation of glia in the brain was seen. Our results suggest that glial activation associated with opioid tolerance and opioid-induced hyperalgesia occurs mainly at the spinal level. The transcriptome data suggest that the microglial activation pattern after chronic morphine treatment has similarities with that of neuropathic pain.


Asunto(s)
Analgésicos Opioides/farmacología , Encéfalo/efectos de los fármacos , Morfina/farmacología , Neuroglía/efectos de los fármacos , Médula Espinal/efectos de los fármacos , Animales , Encéfalo/metabolismo , Encéfalo/patología , Tolerancia a Medicamentos , Hiperalgesia/metabolismo , Hiperalgesia/patología , Masculino , Modelos Animales , Neuroglía/metabolismo , Neuroglía/patología , Dolor Nociceptivo/tratamiento farmacológico , Dolor Nociceptivo/metabolismo , Dolor Nociceptivo/patología , Ratas Sprague-Dawley , Médula Espinal/metabolismo , Médula Espinal/patología , Transcriptoma/efectos de los fármacos
15.
eNeuro ; 4(1)2017.
Artículo en Inglés | MEDLINE | ID: mdl-28275710

RESUMEN

Cerebral dopamine neurotrophic factor (CDNF) protects the nigrostriatal dopaminergic (DA) neurons in rodent models of Parkinson's disease and restores DA circuitry when delivered after these neurons have begun to degenerate. These DA neurons have been suggested to transport striatal CDNF retrogradely to the substantia nigra (SN). However, in cultured cells the binding and internalization of extracellular CDNF has not been reported. The first aim of this study was to examine the cellular localization and pharmacokinetic properties of recombinant human CDNF (rhCDNF) protein after its infusion into rat brain parenchyma. Second, we aimed to study whether the transport of rhCDNF from the striatum to the SN results from its retrograde transport via DA neurons or from its anterograde transport via striatal GABAergic projection neurons. We show that after intrastriatal infusion, rhCDNF diffuses rapidly and broadly, and is cleared with a half-life of 5.5 h. Confocal microscopy analysis of brain sections at 2 and 6 h after infusion of rhCDNF revealed its widespread unspecific internalization by cortical and striatal neurons, exhibiting different patterns of subcellular rhCDNF distribution. Electron microscopy analysis showed that rhCDNF is present inside the endosomes and multivesicular bodies. In addition, we present data that after intrastriatal infusion the rhCDNF found in the SN is almost exclusively localized to the DA neurons, thus showing that it is retrogradely transported.


Asunto(s)
Cuerpo Estriado/metabolismo , Endocitosis/fisiología , Factores de Crecimiento Nervioso/administración & dosificación , Sustancia Negra/metabolismo , Adrenérgicos/farmacología , Animales , Cuerpo Estriado/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/ultraestructura , Endocitosis/efectos de los fármacos , Humanos , Masculino , Ratones , Microscopía Inmunoelectrónica , Factores de Crecimiento Nervioso/metabolismo , Factores de Crecimiento Nervioso/ultraestructura , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Oxidopamina/farmacología , Fosfopiruvato Hidratasa/metabolismo , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/genética , Ratas , Ratas Transgénicas , Ratas Wistar , Sustancia Negra/efectos de los fármacos , Factores de Tiempo , Tirosina 3-Monooxigenasa/metabolismo
16.
Neurobiol Dis ; 96: 335-345, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27425888

RESUMEN

In Parkinson's disease midbrain dopaminergic neurons degenerate and die. Oral medications and deep brain stimulation can relieve the initial symptoms, but the disease continues to progress. Growth factors that might support the survival, enhance the activity, or even regenerate degenerating dopamine neurons have been tried with mixed results in patients. As growth factors do not pass the blood-brain barrier, they have to be delivered intracranially. Therefore their efficient diffusion in brain tissue is of crucial importance. To improve the diffusion of the growth factor neurturin (NRTN), we modified its capacity to attach to heparan sulfates in the extracellular matrix. We present four new, biologically fully active variants with reduced heparin binding. Two of these variants are more stable than WT NRTN in vitro and diffuse better in rat brains. We also show that one of the NRTN variants diffuses better than its close homolog GDNF in monkey brains. The variant with the highest stability and widest diffusion regenerates dopamine fibers and improves the conditions of rats in a 6-hydroxydopamine model of Parkinson's disease more potently than GDNF, which previously showed modest efficacy in clinical trials. The new NRTN variants may help solve the major problem of inadequate distribution of NRTN in human brain tissue.


Asunto(s)
Diseño de Fármacos , Variación Genética/genética , Neurturina/química , Neurturina/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Anfetamina/farmacología , Animales , Células CHO , Cricetulus , Modelos Animales de Enfermedad , Humanos , Macaca fascicularis , Masculino , Modelos Moleculares , Neurturina/genética , Oxidopamina/toxicidad , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/etiología , Proteínas Proto-Oncogénicas c-ret/genética , Proteínas Proto-Oncogénicas c-ret/metabolismo , Ratas , Ratas Wistar , Conducta Estereotipada/efectos de los fármacos , Simpaticolíticos/toxicidad , Tirosina 3-Monooxigenasa/metabolismo
17.
Cell Mol Life Sci ; 72(9): 1779-94, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25601223

RESUMEN

During the past decade, the identification of microRNA (miR) targets has become common laboratory practice, and various strategies are now used to detect interactions between miRs and their mRNA targets. However, the current lack of a standardized identification process often leads to incomplete and/or conflicting results. Here, we review the problems most commonly encountered when verifying miR-mRNA interactions, and we propose a workflow for future studies. To illustrate the challenges faced when validating a miR target, we discuss studies in which the regulation of brain-derived neurotrophic factor by miRs was investigated, and we highlight several controversies that emerged from these studies. Finally, we discuss the therapeutic use of miR inhibitors, and we discuss several questions that should be addressed before proceeding to preclinical testing.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/genética , MicroARNs/metabolismo , ARN Mensajero/metabolismo , Regiones no Traducidas 3' , Animales , Regulación de la Expresión Génica , Humanos , MicroARNs/análisis , MicroARNs/genética , ARN Mensajero/análisis , ARN Mensajero/genética
18.
J Neurosci Methods ; 236: 107-13, 2014 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-25152446

RESUMEN

BACKGROUND: For stroke patients the recovery of cognitive and behavioral functions is often incomplete. Functional recovery is thought to be mediated largely by connectivity rearrangements in the peri-infarct region. A method for manipulating gene expression in this region would be useful for identifying new recovery-enhancing treatments. NEW METHOD: We have characterized a way of targeting adeno-associated virus (AAV) vectors to the peri-infarct region of cortical ischemic lesion in rats 2days after middle cerebral artery occlusion (MCAo). RESULTS: We used magnetic resonance imaging (MRI) to show that the altered properties of post-ischemic brain tissue facilitate the spreading of intrastriatally injected nanoparticles toward the infarct. We show that subcortical injection of green fluorescent protein-encoding dsAAV7-GFP resulted in transduction of cells in and around the white matter tract underlying the lesion, and in the cortex proximal to the lesion. A similar result was achieved with dsAAV7 vector encoding the cerebral dopamine neurotrophic factor (CDNF), a protein with therapeutic potential. COMPARISON WITH EXISTING METHODS: Viral vector-mediated intracerebral gene delivery has been used before in rodent models of ischemic injury. However, the method of targeting gene expression to the peri-infarct region, after the initial phase of ischemic cell death, has not been described before. CONCLUSIONS: We demonstrate a straightforward and robust way to target AAV vector-mediated over-expression of genes to the peri-infarct region in a rat stroke model. This method will be useful for studying the action of specific proteins in peri-infarct region during the recovery process.


Asunto(s)
Encéfalo/fisiopatología , Dependovirus/genética , Expresión Génica , Vectores Genéticos , Accidente Cerebrovascular/fisiopatología , Animales , Encéfalo/patología , Encéfalo/virología , Isquemia Encefálica/patología , Isquemia Encefálica/fisiopatología , Isquemia Encefálica/terapia , Isquemia Encefálica/virología , Modelos Animales de Enfermedad , Terapia Genética/métodos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Inmunohistoquímica , Infarto de la Arteria Cerebral Media , Imagen por Resonancia Magnética , Masculino , Nanopartículas del Metal , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/metabolismo , Ratas Sprague-Dawley , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/terapia , Accidente Cerebrovascular/virología , Transducción Genética/métodos
19.
J Neurosci Res ; 91(6): 780-5, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23426908

RESUMEN

During embryonic development, neurons are first produced in excess, and final numbers are adjusted by apoptosis at later stages. Crucial to this end is the amount of target-derived growth factor available for the neurons. By this means, the target size correctly matches the innervating neuron number. This target-derived survival has been well studied for sympathetic neurons, and nerve growth factor (NGF) was identified to be the crucial factor for maintaining sympathetic neurons at late embryonic and early postnatal stages, with a virtual complete loss of sympathetic neurons in NGF knockout (KO) mice. This indicates that all sympathetic neurons are dependent on NGF. However, also different glia cell line-derived neurotrophic factor (GDNF) KO mice consistently presented a loss of sympathetic neurons. This was the rationale for investigating the role of GDNF for sympathetic precursor/neuron survival. Here we show that GDNF is capable of promoting survival of 30% sympathetic precursors dissociated at E13. This is in line with data from GDNF KOs in which a comparable sympathetic neuron loss was observed at late embryonic stages, although the onset of the phenotype was unclear. We further present data showing that GDNF ligand and canonical receptors are expressed in sympathetic neurons especially at embryonic stages, raising the possibility of an autocrine/paracrine GDNF action. Finally, we show that GDNF also maintained neonatal sympathetic neurons (40%) cultured for 2 days. However, the GDNF responsiveness was lost at 5 days in vitro.


Asunto(s)
Fibras Adrenérgicas , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Células-Madre Neurales/citología , Neurogénesis/fisiología , Animales , Supervivencia Celular , Células Cultivadas , Embrión de Mamíferos , Ratones , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
20.
Cell Mol Life Sci ; 69(11): 1903-16, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22481440

RESUMEN

The secreted protease proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to low-density lipid (LDL) receptor family members LDLR, very low density lipoprotein receptor (VLDLR) and apolipoprotein receptor 2 (ApoER2), and promotes their degradation in intracellular acidic compartments. In the liver, LDLR is a major controller of blood LDL levels, whereas VLDLR and ApoER2 in the brain mediate Reelin signaling, a critical pathway for proper development of the nervous system. Expression level of PCSK9 in the brain is highest in the cerebellum during perinatal development, but is also increased in the adult brain after ischemia. The mechanism of PCSK9 function and its involvement in neuronal apoptosis is poorly understood. We show here that RNAi-mediated knockdown of PCSK9 significantly reduced the death of potassium-deprived cerebellar granule neurons (CGN), as shown by reduced levels of nuclear phosphorylated c-Jun and activated caspase-3, as well as condensed apoptotic nuclei. ApoER2 protein levels were increased in PCSK9 RNAi cells. Knockdown of ApoER2 but not of VLDLR was sufficient to reverse the protection provided by PCSK9 RNAi, suggesting that proapoptotic signaling of PCSK9 is mediated by altered ApoER2 function. Pharmacological inhibition of signaling pathways associated with lipoprotein receptors suggested that PCSK9 regulates neuronal apoptosis independently of NMDA receptor function but in concert with ERK and JNK signaling pathways. PCSK9 RNAi also reduced staurosporine-induced CGN apoptosis and axonal degeneration in the nerve growth factor-deprived dorsal root ganglion neurons. We conclude that PCSK9 potentiates neuronal apoptosis via modulation of ApoER2 levels and related anti-apoptotic signaling pathways.


Asunto(s)
Apoptosis/fisiología , Proteínas Relacionadas con Receptor de LDL/metabolismo , Neuronas/citología , Proproteína Convertasas/fisiología , Serina Endopeptidasas/fisiología , Animales , Caspasa 3/metabolismo , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Proteínas Relacionadas con Receptor de LDL/genética , Ratones , Fosforilación , Potasio/metabolismo , Proproteína Convertasa 9 , Proproteína Convertasas/genética , Proteínas Proto-Oncogénicas c-jun/metabolismo , Interferencia de ARN , Proteína Reelina , Serina Endopeptidasas/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...