Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 12(4)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36840099

RESUMEN

Nitric oxide (NO) is a versatile signal molecule that mediates environmental and hormonal signals orchestrating plant development. NO may act via reversible S-nitrosation of proteins during which an NO moiety is added to a cysteine thiol to form an S-nitrosothiol. In plants, several proteins implicated in hormonal signaling have been reported to undergo S-nitrosation. Here, we report that the Arabidopsis ROP2 GTPase is a further potential target of NO-mediated regulation. The ROP2 GTPase was found to be required for the root shortening effect of NO. NO inhibits primary root growth by altering the abundance and distribution of the PIN1 auxin efflux carrier protein and lowering the accumulation of auxin in the root meristem. In rop2-1 insertion mutants, however, wild-type-like root size of the NO-treated roots were maintained in agreement with wild-type-like PIN1 abundance in the meristem. The ROP2 GTPase was shown to be S-nitrosated in vitro, suggesting that NO might directly regulate the GTPase. The potential mechanisms of NO-mediated ROP2 GTPase regulation and ROP2-mediated NO signaling in the primary root meristem are discussed.

2.
Plants (Basel) ; 10(10)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34685862

RESUMEN

Plant Rho-type GTPases (ROPs) are versatile molecular switches involved in a number of signal transduction pathways. Although it is well known that they are indirectly linked to protein kinases, our knowledge about their direct functional interaction with upstream or downstream protein kinases is scarce. It is reasonable to suppose that similarly to their animal counterparts, ROPs might also be regulated by phosphorylation. There is only, however, very limited experimental evidence to support this view. Here, we present the analysis of two potential phosphorylation sites of AtROP1 and two types of potential ROP-kinases. The S74 site of AtROP1 has been previously shown to potentially regulate AtROP1 activation dependent on its phosphorylation state. However, the kinase phosphorylating this evolutionarily conserved site could not be identified: we show here that despite of the appropriate phosphorylation site consensus sequences around S74 neither the selected AGC nor CPK kinases phosphorylate S74 of AtROP1 in vitro. However, we identified several phosphorylation sites other than S74 for the CPK17 and 34 kinases in AtROP1. One of these sites, S97, was tested for biological relevance. Although the mutation of S97 to alanine (which cannot be phosphorylated) or glutamic acid (which mimics phosphorylation) somewhat altered the protein interaction strength of AtROP1 in yeast cells, the mutant proteins did not modify pollen tube growth in an in vivo test.

3.
Plant Cell Rep ; 37(4): 627-639, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29340786

RESUMEN

KEY MESSAGE: Several amino acid motifs required for Rop-dependent activity were found to form a common surface on RLCKVI_A kinases. This indicates a unique mechanism for Rho-type GTPase-mediated kinase activation in plants. Rho-of-plants (Rop) G-proteins are implicated in the regulation of various cellular processes, including cell growth, cell polarity, hormonal and pathogen responses. Our knowledge about the signalling pathways downstream of Rops is continuously increasing. However, there are still substantial gaps in this knowledge. One reason for this is that these pathways are considerably different from those described for yeast and/or animal Rho-type GTPases. Among others, plants lack all Rho/Rac/Cdc42-activated kinase families. Only a small group of plant-specific receptor-like cytoplasmic kinases (RLCK VI_A) has been shown to exhibit Rop-binding-dependent in vitro activity. These kinases do not carry any known GTPase-binding motifs. Based on the sequence comparison of the Rop-activated RLCK VI_A and the closely related but constitutively active RLCK VI_B kinases, several distinguishing amino acid residues/motifs were identified. All but one of these were found to be required for the Rop-mediated regulation of the in vitro activity of two RLCK VI_A kinases. Structural modelling indicated that these motifs might form a common Rop-binding surface. Based on in silico data mining, kinases that have the identified Rop-binding motifs are present in Embryophyta but not in unicellular green algae. It can, therefore, be supposed that Rops recruited these plant-specific kinases for signalling at an early stage of land plant evolution.


Asunto(s)
Proteínas Algáceas/genética , Secuencias de Aminoácidos/genética , Proteínas de Unión al GTP/genética , Proteínas de Plantas/genética , Proteínas Quinasas/genética , Proteínas Algáceas/metabolismo , Secuencia de Aminoácidos , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Simulación por Computador , Proteínas de Unión al GTP/metabolismo , Modelos Moleculares , Fosforilación , Proteínas de Plantas/metabolismo , Unión Proteica , Dominios Proteicos , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Homología de Secuencia de Aminoácido , Técnicas del Sistema de Dos Híbridos
4.
J Cardiovasc Pharmacol ; 65(5): 485-93, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25626975

RESUMEN

Nitroglycerin exerts a direct myocardial anti-ischemic effect even in the state of vascular nitrate tolerance. To examine the potentially diverse molecular responses in vascular and cardiac tissues, we investigated the gene expression profile of the heart and the aorta by DNA microarray in male Wistar rats that were previously made tolerant to the vascular effects of nitroglycerin. The blood pressure-lowering effect of nitroglycerin (1-100 µg/kg) was markedly attenuated in rats pretreated for 3 days with 3 × 100 mg/kg nitroglycerin. Nitric oxide content was significantly elevated in the heart but not in the aorta of nitrate-tolerant animals, which indicated tissue-specific differences in nitroglycerin bioconversion. Of 7742 genes analyzed by DNA microarray, we found that although the expression of 25 genes changed significantly in the heart (increased: Tas2r119, Map6, Cd59, Kcnh2, Kcnh3, Senp6, Mcpt1, Tshb, Haus1, Vipr1, Lrn3, Lifr; decreased: Ihh, Fgfr1, Cryge, Krt9, Agrn, C4bpb, Fcer1a, Csf3, Hsd17b11, Hsd11b2, Ctnnbl1, Prpg1, Hsf1), only 14 genes were altered in the aorta (increased: Tas2r119, Ihh, Rrad, Npm1, Snai1; decreased: Tubb2b, Usp15, Sema6c, Wfdc2, Rps21, Ramp2, Galr1, Atxn1, Lhx1) in vascular nitrate tolerance. Quantitative reverse transcription polymerase chain reaction analysis of genes related to oxidative/nitrative/nitrosative stress also showed differential expression pattern in the heart and aorta. This is the first pharmacogenomic analysis showing that nitroglycerin treatment leading to vascular nitrate tolerance differentially impacts gene expression in vascular and cardiac tissues, which indicates different tissue-specific downstream signaling pathways.


Asunto(s)
Aorta Abdominal/metabolismo , Aorta Torácica/metabolismo , Tolerancia a Medicamentos/genética , Miocardio/metabolismo , Nitroglicerina/administración & dosificación , Animales , Presión Sanguínea/efectos de los fármacos , Esquema de Medicación , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Inyecciones Subcutáneas , Masculino , Modelos Animales , Óxido Nítrico/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
5.
Plant Cell Rep ; 34(3): 457-68, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25487440

RESUMEN

KEY MESSAGE: The Arabidopsis receptor-like cytoplasmic kinase AtRLCK VI_A3 is activated by AtROPs and is involved in trichome branching and pathogen interaction. Receptor-like cytoplasmic kinases (RLCKs) belong to the large superfamily of receptor-like kinases, which are involved in a variety of cellular processes like plant growth, development and immune responses. Recent studies suggest that RLCKs of the VI_A subfamily are possible downstream effectors of the small monomeric G proteins of the plant-specific Rho family, called 'Rho of plants' (RAC/ROPs). Here, we describe Arabidopsis thaliana AtRLCK VI_A3 as a molecular interactor of AtROPs. In Arabidopsis epidermal cells, transient co-expression of plasma membrane located constitutively activated (CA) AtROP4 or CA AtROP6 resulting in the recruitment of green fluorescent protein-tagged AtRLCK VI_A3 to the cell periphery. Intrinsic kinase activity of AtRLCK VI_A3 was enhanced in the presence of CA AtROP6 in vitro and further suggested a functional interaction between the proteins. In the interaction of the biotrophic powdery mildew fungus Erysiphe cruciferarum (E. cruciferarum) and its host plant Arabidopsis, Atrlck VI_A3 mutant lines supported enhanced fungal reproduction. Furthermore Atrlck VI_A3 mutant lines showed slightly reduced size and an increase in trichome branch number compared to wild-type plants. In summary, our data suggest a role of the AtROP-regulated AtRLCK VI_A3 in basal resistance to E. cruciferarum as well as in plant growth and cellular differentiation during trichome morphogenesis. Results are discussed in the context of literature suggesting a function of RAC/ROPs in both resistance and susceptibility to pathogen infection.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Ascomicetos/patogenicidad , Resistencia a la Enfermedad , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hordeum/genética , Hordeum/metabolismo , Interacciones Huésped-Patógeno , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Mutación , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente , Tricomas/crecimiento & desarrollo , Tricomas/metabolismo
6.
Can J Physiol Pharmacol ; 91(8): 648-56, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23889090

RESUMEN

Dilated cardiomyopathy (DCM) is a multifactorial disease characterized by left ventricular dilation that is associated with systolic dysfunction and increased action potential duration. The Kir2.x K⁺ channels (encoded by KCNJ genes) regulate the inward rectifier current (IK1) contributing to the final repolarization in cardiac muscle. Here, we describe the transitions in the gene expression profiles of 4 KCNJ genes from healthy or dilated cardiomyopathic human hearts. In the healthy adult ventricles, KCNJ2, KCNJ12, and KCNJ4 (Kir2.1-2.3, respectively) genes were expressed at high levels, while expression of the KCNJ14 (Kir2.4) gene was low. In DCM ventricles, the levels of Kir2.1 and Kir2.3 were upregulated, but those of Kir2.2 channels were downregulated. Additionally, the expression of the DLG1 gene coding for the synapse-associated protein 97 (SAP97) anchoring molecule exhibited a 2-fold decline with increasing age in normal hearts, and it was robustly downregulated in young DCM patients. These adaptations could offer a new aspect for the explanation of the generally observed physiological and molecular alterations found in DCM.


Asunto(s)
Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/metabolismo , Expresión Génica , Ventrículos Cardíacos/metabolismo , Canales de Potasio de Rectificación Interna/genética , Adolescente , Adulto , Envejecimiento/genética , Western Blotting , Cardiomiopatía Dilatada/patología , Femenino , Ventrículos Cardíacos/patología , Humanos , Masculino , Potenciales de la Membrana , Persona de Mediana Edad , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Técnicas de Placa-Clamp , Isoformas de Proteínas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Adulto Joven
7.
Autophagy ; 8(7): 1124-35, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22562043

RESUMEN

Autophagy delivers cytoplasmic material for lysosomal degradation in eukaryotic cells. Starvation induces high levels of autophagy to promote survival in the lack of nutrients. We compared genome-wide transcriptional profiles of fed and starved control, autophagy-deficient Atg7 and Atg1 null mutant Drosophila larvae to search for novel regulators of autophagy. Genes involved in catabolic processes including autophagy were transcriptionally upregulated in all cases. We also detected repression of genes involved in DNA replication in autophagy mutants compared with control animals. The expression of Rack1 (receptor of activated protein kinase C 1) increased 4.1- to 5.5-fold during nutrient deprivation in all three genotypes. The scaffold protein Rack1 plays a role in a wide range of processes including translation, cell adhesion and migration, cell survival and cancer. Loss of Rack1 led to attenuated autophagic response to starvation, and glycogen stores were decreased 11.8-fold in Rack1 mutant cells. Endogenous Rack1 partially colocalized with GFP-Atg8a and early autophagic structures on the ultrastructural level, suggesting its involvement in autophagosome formation. Endogenous Rack1 also showed a high degree of colocalization with glycogen particles in the larval fat body, and with Shaggy, the Drosophila homolog of glycogen synthase kinase 3B (GSK-3B). Our results, for the first time, demonstrated the fundamental role of Rack1 in autophagy and glycogen synthesis.


Asunto(s)
Autofagia/genética , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Genes de Insecto/genética , Glucógeno/deficiencia , Receptores Citoplasmáticos y Nucleares/deficiencia , Receptores Citoplasmáticos y Nucleares/genética , Animales , Drosophila melanogaster/ultraestructura , Cuerpo Adiposo/metabolismo , Cuerpo Adiposo/ultraestructura , Técnicas de Silenciamiento del Gen , Glucógeno/biosíntesis , Larva/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Transporte de Proteínas , Receptores de Cinasa C Activada , Transcripción Genética
8.
Hypertens Res ; 35(4): 381-7, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22072108

RESUMEN

Dietary deficiency of ω-3 fatty acids (ω-3 DEF) produces hypertension in later life. This study examined the effect of ω-3 DEF on blood pressure and hypothalamic gene expression in young rats, before the development of hypertension, and in older rats following the onset of hypertension. Animals were fed experimental diets that were deficient in ω-3 fatty acids, sufficient in short-chain ω-3 fatty acids or sufficient in short- and long-chain ω-3 fatty acids, from the prenatal period until 10 or 36 weeks-of-age. There was no difference in blood pressure between groups at 10 weeks-of-age; however, at 36 weeks-of-age ω-3 DEF animals were hypertensive in relation to sufficient groups. At 10 weeks, expression of angiotensin-II(1A) receptors and dopamine D(3) receptors were significantly increased in the hypothalamic tissue of ω-3 DEF animals. In contrast, at 36 weeks, α(2a) and ß(1) adrenergic receptor expression was significantly reduced in the ω-3 DEF group. Brain docosahexaenoic acid was significantly lower in ω-3 DEF group compared with sufficient groups. This study demonstrates that dietary ω-3 DEF causes changes both in the expression of key genes involved in central blood pressure regulation and in blood pressure. The data may indicate that hypertension resulting from ω-3 DEF is mediated by the central adrenergic system.


Asunto(s)
Presión Sanguínea/genética , Ácidos Grasos Omega-3/metabolismo , Expresión Génica , Hipertensión/genética , Hipotálamo/metabolismo , Animales , Progresión de la Enfermedad , Hipertensión/etiología , Hipertensión/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Receptor de Angiotensina Tipo 1/genética , Receptor de Angiotensina Tipo 1/metabolismo , Receptores Adrenérgicos alfa 2/genética , Receptores Adrenérgicos alfa 2/metabolismo , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 1/metabolismo , Receptores Dopaminérgicos/genética , Receptores Dopaminérgicos/metabolismo
9.
Acta Biol Hung ; 61(4): 434-48, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21112835

RESUMEN

The aim of the present study was to identify gene expression changes in the rapid cardiac pacing-induced delayed antiarrhythmic protection in the canine, using cDNA microarrays and quantitative real-time PCR (QRT -PCR) techniques. In all dogs under light pentobarbitone anaesthesia, a pacing electrode was introduced into the right ventricle, and then the animals were divided into three groups: (1) sham-operated and sham-paced group (SP, n = 3) (2) ischaemic control group (IC; n = 3); these were without cardiac pacing and subjected only to a 25 min occlusion of the left anterior descending coronary artery (LAD), and (3) paced group (PC, n = 3); these animals were paced at a rate of 220-240 beats min-1 24 h prior to ischaemia. With cDNA chip 23 genes were found with altered expression in response to rapid cardiac pacing and 10 genes in the IC group when compared to SP dogs. These genes encode transcription factors (MEF2); members of signaling pathways (TGFß2, PDE4D9), hormone related proteins (e.g. vasopressin V1 and V2 receptors). RT-QPCR was used either to confirm the results of the microarray analysis and also to study 46 genes which are already known to have a role in the late phase of PC. By this method 17 genes were up-regulated and 6 genes down-regulated in the IC group; their expression ratios changed either to the opposite or showed no alteration after cardiac pacing. This study would add some new information about those transcriptional changes that are involved in the delayed phase of cardiac protection.


Asunto(s)
Estimulación Cardíaca Artificial/métodos , Perfilación de la Expresión Génica , Pentobarbital/farmacología , Anestesia , Animales , Vasos Coronarios/patología , ADN Complementario/metabolismo , Perros , Regulación hacia Abajo , Femenino , Corazón/fisiología , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Regulación hacia Arriba
10.
Artículo en Inglés | MEDLINE | ID: mdl-19138887

RESUMEN

Polyunsaturated fatty acids (PUFAs) are essential structural components of all cell membranes and, more so, of the central nervous system. Several studies revealed that n-3 PUFAs possess anti-inflammatory actions and are useful in the treatment of dyslipidemia. These actions explain the beneficial actions of n-3 PUFAs in the management of cardiovascular diseases, inflammatory conditions, neuronal dysfunction, and cancer. But, the exact molecular targets of these beneficial actions of n-3 PUFAs are not known. Mice engineered to carry a fat-1 gene from Caenorhabditis elegans add a double bond into an unsaturated fatty acid hydrocarbon chain and convert n-6 to n-3 fatty acids. This results in an abundance of n-3 eicosapentaenoic acid and docosapentaenoic acid specifically in the brain and a reduction in n-6 fatty acids of these mice that can be used to evaluate the actions of n-3 PUFAs. Gene expression profile, RT-PCR and protein microarray studies in the hippocampus and whole brain of wild-type and fat-1 transgenic mice revealed that genes and proteins concerned with inflammation, apoptosis, neurotransmission, and neuronal growth and synapse formation are specifically modulated in fat-1 mice. These results may explain as to why n-3 PUFAs are of benefit in the prevention and treatment of diseases such as Alzheimer's disease, schizophrenia and other diseases associated with neuronal dysfunction, low-grade systemic inflammatory conditions, and bronchial asthma. Based on these data, it is evident that n-3 PUFAs act to modulate specific genes and formation of their protein products and thus, bring about their various beneficial actions.


Asunto(s)
Encéfalo/metabolismo , Proteínas de Caenorhabditis elegans , Ácido Graso Desaturasas , Perfilación de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos , Análisis por Matrices de Proteínas , Animales , Encéfalo/anatomía & histología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Ácidos Grasos Insaturados/química , Ácidos Grasos Insaturados/metabolismo , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Transgénicos
11.
J Cell Sci ; 120(Pt 18): 3238-48, 2007 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-17878237

RESUMEN

The anaphase-promoting complex/cyclosome or APC/C is a key regulator of chromosome segregation and mitotic exit in eukaryotes. It contains at least 11 subunits, most of which are evolutionarily conserved. The most abundant constituents of the vertebrate APC/C are the four structurally related tetratrico-peptide repeat (TPR) subunits, the functions of which are not yet precisely understood. Orthologues of three of the TPR subunits have been identified in Drosophila. We have shown previously that one of the TPR subunits of the Drosophila APC/C, Apc3 (also known as Cdc27 or Mákos), is essential for development, and perturbation of its function results in mitotic cyclin accumulation and metaphase-like arrest. In this study we demonstrate that the Drosophila APC/C associates with a new TPR protein, a genuine orthologue of the vertebrate Apc7 subunit that is not found in yeasts. In addition to this, transgenic flies knocked down for three of the TPR genes Apc6 (Cdc16), Apc7 and Apc8 (Cdc23), by RNA interference were established to investigate their function. Whole-body expression of subunit-specific dsRNA efficiently silences these genes resulting in only residual mRNA concentrations. Apc6/Cdc16 and Apc8/Cdc23 silencing induces developmental delay and causes different pupal lethality. Cytological examination showed that these animals had an elevated level of apoptosis, high mitotic index and delayed or blocked mitosis in a prometaphase-metaphase-like state with overcondensed chromosomes. The arrested neuroblasts contained elevated levels of cyclin B but, surprisingly, cyclin A appeared to be degraded normally. Contrary to the situation for the Apc6/Cdc16 and Apc8/Cdc23 genes, the apparent loss of Apc7 function does not lead to the above abnormalities. Instead, the Apc7 knocked down animals and null mutants are viable and fertile, although they display mild chromosome segregation defects and anaphase delay. Nevertheless, the Apc7 subunit shows synergistic genetic interaction with Apc8/Cdc23 that, together with the phenotypic data, assumes a limited functional role for Apc7. Taken together, these data suggest that the structurally related TPR subunits contribute differently to the function of the anaphase-promoting complex.


Asunto(s)
Apoptosis/fisiología , Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Metafase/fisiología , Prometafase/fisiología , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Animales , Animales Modificados Genéticamente , Proteínas de Ciclo Celular/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Silenciador del Gen , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Pupa/genética , Pupa/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/genética
12.
Curr Pharm Biotechnol ; 7(6): 525-9, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17168668

RESUMEN

The applications of 'omics' (genomics, transcriptomics, proteomics and metabolomics) technologies in nutritional studies have opened new possibilities to understand the effects and the action of different diets both in healthy and diseased states and help to define personalized diets and to develop new drugs that revert or prevent the negative dietary effects. Several single nucleotide polymorphisms have already been investigated for potential gene-diet interactions in the response to different lipid diets. It is also well-known that besides the known cellular effects of lipid nutrition, dietary lipids influence gene expression in a tissue, concentration and age-dependent manner. Protein expression and post-translational changes due to different diets have been reported as well. To understand the molecular basis of the effects and roles of dietary lipids high-throughput functional genomic methods such as DNA- or protein microarrays, high-throughput NMR and mass spectrometry are needed to assess the changes in a global way at the genome, at the transcriptome, at the proteome and at the metabolome level. The present review will focus on different high-throughput technologies from the aspects of assessing the effects of dietary fatty acids including cholesterol and polyunsaturated fatty acids. Several genes were identified that exhibited altered expression in response to fish-oil treatment of human lung cancer cells, including protein kinase C, natriuretic peptide receptor-A, PKNbeta, interleukin-1 receptor associated kinase-1 (IRAK-1) and diacylglycerol kinase genes by using high-throughput quantitative real-time PCR. Other results will also be mentioned obtained from cholesterol and polyunsaturated fatty acid fed animals by using DNA- and protein microarrays.


Asunto(s)
Grasas de la Dieta/administración & dosificación , Perfilación de la Expresión Génica/métodos , Metabolismo de los Lípidos , Análisis por Micromatrices/métodos , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Proteoma/metabolismo , Animales , Mapeo Cromosómico/métodos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genómica/métodos , Humanos , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...