Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Transpl Int ; 37: 12380, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38463463

RESUMEN

Donor organ biomarkers with sufficient predictive value in liver transplantation (LT) are lacking. We herein evaluate liver viability and mitochondrial bioenergetics for their predictive capacity towards the outcome in LT. We enrolled 43 consecutive patients undergoing LT. Liver biopsy samples taken upon arrival after static cold storage were assessed by histology, real-time confocal imaging analysis (RTCA), and high-resolution respirometry (HRR) for mitochondrial respiration of tissue homogenates. Early allograft dysfunction (EAD) served as primary endpoint. HRR data were analysed with a focus on the efficacy of ATP production or P-L control efficiency, calculated as 1-L/P from the capacity of oxidative phosphorylation P and non-phosphorylating respiration L. Twenty-two recipients experienced EAD. Pre-transplant histology was not predictive of EAD. The mean RTCA score was significantly lower in the EAD cohort (-0.75 ± 2.27) compared to the IF cohort (0.70 ± 2.08; p = 0.01), indicating decreased cell viability. P-L control efficiency was predictive of EAD (0.76 ± 0.06 in IF vs. 0.70 ± 0.08 in EAD-livers; p = 0.02) and correlated with the RTCA score. Both RTCA and P-L control efficiency in biopsy samples taken during cold storage have predictive capacity towards the outcome in LT. Therefore, RTCA and HRR should be considered for risk stratification, viability assessment, and bioenergetic testing in liver transplantation.


Asunto(s)
Trasplante de Hígado , Disfunción Primaria del Injerto , Humanos , Trasplante de Hígado/efectos adversos , Supervivencia de Injerto , Factores de Riesgo , Hígado/patología , Metabolismo Energético , Aloinjertos/patología , Disfunción Primaria del Injerto/etiología
2.
Int J Mol Sci ; 24(11)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37298486

RESUMEN

The majority of organs used for liver transplantation come from brain-dead donors (DBD). In order to overcome the organ shortage, increasingly donation after circulatory death (DCD) organs are also considered. Since normothermic machine perfusion (NMP) restores metabolic activity and allows for in-depth assessment of organ quality and function prior to transplantation, such organs may benefit from NMP. We herein compare the bioenergetic performance through a comprehensive evaluation of mitochondria by high-resolution respirometry in tissue biopsies and the inflammatory response in DBD and DCD livers during NMP. While livers were indistinguishable by perfusate biomarker assessment and histology, our findings revealed a greater impairment of mitochondrial function in DCD livers after static cold storage compared to DBD livers. During subsequent NMPs, DCD organs recovered and eventually showed a similar performance as DBD livers. Cytokine expression analysis showed no differences in the early phase of NMP, while towards the end of NMP, significantly elevated levels of IL-1ß, IL-5 and IL-6 were found in the perfusate of DCD livers. Based on our results, we find it worthwhile to reconsider more DCD organs for transplantation to further extend the donor pool. Therefore, donor organ quality criteria must be developed, which may include an assessment of bioenergetic function and cytokine quantification.


Asunto(s)
Trasplante de Hígado , Obtención de Tejidos y Órganos , Humanos , Hígado/patología , Trasplante de Hígado/métodos , Donantes de Tejidos , Perfusión/métodos , Metabolismo Energético , Preservación de Órganos/métodos
3.
Biomolecules ; 13(5)2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-37238664

RESUMEN

Mitochondrial ROS (mitoROS) control many reactions in cells. Biological effects of mitoROS in vivo can be investigated by modulation via mitochondria-targeted antioxidants (mtAOX, mitoTEMPO). The aim of this study was to determine how mitoROS influence redox reactions in different body compartments in a rat model of endotoxemia. We induced inflammatory response by lipopolysaccharide (LPS) injection and analyzed effects of mitoTEMPO in blood, abdominal cavity, bronchoalveolar space, and liver tissue. MitoTEMPO decreased the liver damage marker aspartate aminotransferase; however, it neither influenced the release of cytokines (e.g., tumor necrosis factor, IL-4) nor decreased ROS generation by immune cells in the compartments examined. In contrast, ex vivo mitoTEMPO treatment substantially reduced ROS generation. Examination of liver tissue revealed several redox paramagnetic centers sensitive to in vivo LPS and mitoTEMPO treatment and high levels of nitric oxide (NO) in response to LPS. NO levels in blood were lower than in liver, and were decreased by in vivo mitoTEMPO treatment. Our data suggest that (i) inflammatory mediators are not likely to directly contribute to ROS-mediated liver damage and (ii) mitoTEMPO is more likely to affect the redox status of liver cells reflected in a redox change of paramagnetic molecules. Further studies are necessary to understand these mechanisms.


Asunto(s)
Endotoxemia , Hepatopatías , Ratas , Animales , Especies Reactivas de Oxígeno , Lipopolisacáridos/farmacología , Endotoxemia/inducido químicamente , Oxidación-Reducción
4.
EBioMedicine ; 85: 104311, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36374770

RESUMEN

BACKGROUND: Reliable biomarkers for organ quality assessment during normothermic machine perfusion (NMP) are desired. ATP (adenosine triphosphate) production by oxidative phosphorylation plays a crucial role in the bioenergetic homeostasis of the liver. Thus, detailed analysis of the aerobic mitochondrial performance may serve as predictive tool towards the outcome after liver transplantation. METHODS: In a prospective clinical trial, 50 livers were subjected to NMP (OrganOx Metra) for up to 24.ßh. Biopsy and perfusate samples were collected at the end of cold storage, at 1.ßh, 6.ßh, end of NMP, and 1.ßh after reperfusion. Mitochondrial function and integrity were characterized by high-resolution respirometry (HRR), AMP, ADP, ATP and glutamate dehydrogenase analysis and correlated with the clinical outcome (L-GrAFT score). Real-time confocal microscopy was performed to assess tissue viability. Structural damage was investigated by histology, immunohistochemistry and transmission electron microscopy. FINDINGS: A considerable variability in tissue viability and mitochondrial respiration between individual livers at the end of cold storage was observed. During NMP, mitochondrial respiration with succinate and tissue viability remained stable. In the multivariate analysis of the 35 transplanted livers (15 were discarded), area under the curve (AUC) of LEAK respiration, cytochrome c control efficiency (mitochondrial outer membrane damage), and efficacy of the mitochondrial ATP production during the first 6.ßh of NMP correlated with L-GrAFT. INTERPRETATIONS: Bioenergetic competence during NMP plays a pivotal role in addition to tissue injury markers. The AUC for markers of outer mitochondrial membrane damage, ATP synthesis efficiency and dissipative respiration (LEAK) predict the clinical outcome upon liver transplantation. FUNDING: This study was funded by a Grant from the In Memoriam Dr. Gabriel Salzner Stiftung awarded to SS and the Tiroler Wissenschaftsfond granted to TH.


Asunto(s)
Isquemia Fría , Preservación de Órganos , Humanos , Adenosina Trifosfato/metabolismo , Hígado/metabolismo , Mitocondrias , Perfusión , Estudios Prospectivos , Respiración
5.
Antioxidants (Basel) ; 11(2)2022 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-35204206

RESUMEN

Mitochondria-targeted antioxidants (mtAOX) are a promising treatment strategy against reactive oxygen species-induced damage. Reports about harmful effects of mtAOX lead to the question of whether these could be caused by the carrier molecule triphenylphosphonium (TPP). The aim of this study was to investigate the biological effects of the mtAOX mitoTEMPO, and TPP in a rat model of systemic inflammatory response. The inflammatory response was induced by lipopolysaccharide (LPS) injection. We show that mitoTEMPO reduced expression of inducible nitric oxide synthase in the liver, lowered blood levels of tissue damage markers such as liver damage markers (aspartate aminotransferase and alanine aminotransferase), kidney damage markers (urea and creatinine), and the general organ damage marker, lactate dehydrogenase. In contrast, TPP slightly, but not significantly, increased the LPS-induced effects. Surprisingly, both mitoTEMPO and TPP reduced the wet/dry ratio in the lung after 24 h. In the isolated lung, both substances enhanced the increase in pulmonary arterial pressure induced by LPS observed within 3 h after LPS treatments but did not affect edema formation at this time. Our data suggest that beneficial effects of mitoTEMPO in organs are due to its antioxidant moiety (TEMPO), except for the lung where its effects are mediated by TPP.

6.
Antioxidants (Basel) ; 12(1)2022 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-36670893

RESUMEN

The implementation of ex vivo organ machine perfusion (MP) into clinical routine undoubtedly helped to increase the donor pool. It enables not just organ assessment, but potentially regeneration and treatment of marginal organs in the future. During organ procurement, redox-stress triggered ischemia-reperfusion injury (IRI) is inevitable, which in addition to pre-existing damage negatively affects such organs. Ex vivo MP enables to study IRI-associated tissue damage and its underlying mechanisms in a near to physiological setting. However, research using whole organs is limited and associated with high costs. Here, in vitro models well suited for early stage research or for studying particular disease mechanisms come into play. While cell lines convince with simplicity, they do not exert all organ-specific functions. Tissue slice cultures retain the three-dimensional anatomical architecture and cells remain within their naïve tissue-matrix configuration. Organoids may provide an even closer modelling of physiologic organ function and spatial orientation. In this review, we discuss the role of oxidative stress during ex vivo MP and the suitability of currently available in vitro models to further study the underlying mechanisms and to pretest potential treatment strategies.

7.
Int J Mol Sci ; 22(19)2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34638617

RESUMEN

The liver, in combination with a functional biliary system, is responsible for maintaining a great number of vital body functions. However, acute and chronic liver diseases may lead to irreversible liver damage and, ultimately, liver failure. At the moment, the best curative option for patients suffering from end-stage liver disease is liver transplantation. However, the number of donor livers required by far surpasses the supply, leading to a significant organ shortage. Cellular therapies play an increasing role in the restoration of organ function and can be integrated into organ transplantation protocols. Different types and sources of stem cells are considered for this purpose, but highly specific immune cells are also the focus of attention when developing individualized therapies. In-depth knowledge of the underlying mechanisms governing cell differentiation and engraftment is crucial for clinical implementation. Additionally, novel technologies such as ex vivo machine perfusion and recent developments in tissue engineering may hold promising potential for the implementation of cell-based therapies to restore proper organ function.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Hepatopatías/terapia , Animales , Enfermedad Hepática en Estado Terminal/fisiopatología , Enfermedad Hepática en Estado Terminal/terapia , Humanos , Inmunoterapia/métodos , Hígado/citología , Hígado/fisiología , Hepatopatías/inmunología , Hepatopatías/fisiopatología , Regeneración Hepática , Trasplante de Hígado , Medicina Regenerativa , Trasplante de Células Madre/métodos
8.
Cancers (Basel) ; 13(7)2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33917317

RESUMEN

Tumor cells display metabolic alterations when compared to non-transformed cells. These characteristics are crucial for tumor development, maintenance and survival providing energy supplies and molecular precursors. Anaplerosis is the property of replenishing the TCA cycle, the hub of carbon metabolism, participating in the biosynthesis of precursors for building blocks or signaling molecules. In advanced prostate cancer, an upshift of succinate-driven oxidative phosphorylation via mitochondrial Complex II was reported. Here, using untargeted metabolomics, we found succinate accumulation mainly in malignant cells and an anaplerotic effect contributing to biosynthesis, amino acid, and carbon metabolism. Succinate also stimulated oxygen consumption. Malignant prostate cells displayed higher mitochondrial affinity for succinate when compared to non-malignant prostate cells and the succinate-driven accumulation of metabolites induced expression of mitochondrial complex subunits and their activities. Moreover, extracellular succinate stimulated migration, invasion, and colony formation. Several enzymes linked to accumulated metabolites in the malignant cells were found upregulated in tumor tissue datasets, particularly NME1 and SHMT2 mRNA expression. High expression of the two genes was associated with shorter disease-free survival in prostate cancer cohorts. Moreover, in-vitro expression of both genes was enhanced in prostate cancer cells upon succinate stimulation. In conclusion, the data indicate that uptake of succinate from the tumor environment has an anaplerotic effect that enhances the malignant potential of prostate cancer cells.

9.
Shock ; 54(1): 87-95, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31318833

RESUMEN

The hypoxia-sensitive endothelin (ET) system plays an important role in circulatory regulation through vasoconstrictor ETA and ETB2 and vasodilator ETB1 receptors. Sepsis progression is associated with microcirculatory and mitochondrial disturbances along with tissue hypoxia. Our aim was to investigate the consequences of treatments with the ETA receptor (ETA-R) antagonist, ETB1 receptor (ETB1-R) agonist, or their combination on oxygen dynamics, mesenteric microcirculation, and mitochondrial respiration in a rodent model of sepsis. Sprague Dawley rats were subjected to fecal peritonitis (0.6 g kg i.p.) or a sham operation. Septic animals were treated with saline or the ETA-R antagonist ETR-p1/fl peptide (100 nmol kg i.v.), the ETB1-R agonist IRL-1620 (0.55 nmol kg i.v.), or a combination therapy 22 h after induction. Invasive hemodynamic monitoring and blood gas analysis were performed during a 90-min observation, plasma ET-1 levels were determined, and intestinal capillary perfusion (CPR) was detected by intravital videomicroscopy. Mitochondrial Complex I (CI)- and CII-linked oxidative phosphorylation (OXPHOS) was evaluated by high-resolution respirometry in liver biopsies. Septic animals were hypotensive with elevated plasma ET-1. The ileal CPR, oxygen extraction (ExO2), and CI-CII-linked OXPHOS capacities decreased. ETR-p1/fl treatment increased ExO2 (by >45%), CPR, and CII-linked OXPHOS capacity. The administration of IRL-1620 countervailed the sepsis-induced hypotension (by >30%), normalized ExO2, and increased CPR. The combined ETA-R antagonist-ETB1-R agonist therapy reduced the plasma ET-1 level, significantly improved the intestinal microcirculation (by >41%), and reversed mitochondrial dysfunction. The additive effects of a combined ETA-R-ETB1-R-targeted therapy may offer a tool for a novel microcirculatory and mitochondrial resuscitation strategy in experimental sepsis.


Asunto(s)
Microcirculación/efectos de los fármacos , Receptor de Endotelina A/fisiología , Receptor de Endotelina B/fisiología , Sepsis/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Antagonistas de los Receptores de la Endotelina A/uso terapéutico , Antagonistas de los Receptores de la Endotelina B/uso terapéutico , Masculino , Microcirculación/fisiología , Microscopía por Video , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Ratas , Ratas Sprague-Dawley , Receptor de Endotelina A/agonistas , Receptor de Endotelina A/sangre , Receptor de Endotelina A/efectos de los fármacos , Receptor de Endotelina B/agonistas , Receptor de Endotelina B/sangre , Receptor de Endotelina B/efectos de los fármacos , Sepsis/fisiopatología
10.
Methods Mol Biol ; 1782: 31-70, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29850993

RESUMEN

Protocols for High-Resolution FluoRespirometry of intact cells, permeabilized cells, permeabilized muscle fibers, isolated mitochondria, and tissue homogenates offer sensitive diagnostic tests of integrated mitochondrial function using standard cell culture techniques, small needle biopsies of muscle, and mitochondrial preparation methods. Multiple substrate-uncoupler-inhibitor titration (SUIT) protocols for analysis of oxidative phosphorylation (OXPHOS) improve our understanding of mitochondrial respiratory control and the pathophysiology of mitochondrial diseases. Respiratory states are defined in functional terms to account for the network of metabolic interactions in complex SUIT protocols with stepwise modulation of coupling control and electron transfer pathway states. A regulated degree of intrinsic uncoupling is a hallmark of oxidative phosphorylation, whereas pathological and toxicological dyscoupling is evaluated as a mitochondrial defect. The noncoupled state of maximum respiration is experimentally induced by titration of established uncouplers (CCCP, FCCP, DNP) to collapse the protonmotive force across the mitochondrial inner membrane and measure the electron transfer (ET) capacity (open-circuit operation of respiration). Intrinsic uncoupling and dyscoupling are evaluated as the flux control ratio between non-phosphorylating LEAK respiration (electron flow coupled to proton pumping to compensate for proton leaks) and ET capacity. If OXPHOS capacity (maximally ADP-stimulated O2 flux) is less than ET capacity, the phosphorylation pathway contributes to flux control. Physiological substrate combinations supporting the NADH and succinate pathway are required to reconstitute tricarboxylic acid cycle function. This supports maximum ET and OXPHOS capacities, due to the additive effect of multiple electron supply pathways converging at the Q-junction. ET pathways with electron entry separately through NADH (pyruvate and malate or glutamate and malate) or succinate (succinate and rotenone) restrict ET capacity and artificially enhance flux control upstream of the Q-cycle, providing diagnostic information on specific ET-pathway branches. O2 concentration is maintained above air saturation in protocols with permeabilized muscle fibers to avoid experimental O2 limitation of respiration. Standardized two-point calibration of the polarographic oxygen sensor (static sensor calibration), calibration of the sensor response time (dynamic sensor calibration), and evaluation of instrumental background O2 flux (systemic flux compensation) provide the unique experimental basis for high accuracy of quantitative results and quality control in High-Resolution FluoRespirometry.


Asunto(s)
Fluorometría/métodos , Mitocondrias Musculares/metabolismo , Fosforilación Oxidativa , Polarografía/métodos , Animales , Biopsia , Biopsia con Aguja , Calibración , Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Permeabilidad de la Membrana Celular , Respiración de la Célula , Transporte de Electrón , Fluorometría/instrumentación , Células HEK293 , Humanos , Ratones , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/patología , Consumo de Oxígeno , Polarografía/instrumentación
11.
Redox Biol ; 13: 170-181, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28578275

RESUMEN

Liver failure induced by systemic inflammatory response (SIRS) is often associated with mitochondrial dysfunction but the mechanism linking SIRS and mitochondria-mediated liver failure is still a matter of discussion. Current hypotheses suggest that causative events could be a drop in ATP synthesis, opening of mitochondrial permeability transition pore, specific changes in mitochondrial morphology, impaired Ca2+ uptake, generation of mitochondrial reactive oxygen species (mtROS), turnover of mitochondria and imbalance in electron supply to the respiratory chain. The aim of this review is to critically analyze existing hypotheses, in order to highlight the most promising research lines helping to prevent liver failure induced by SIRS. Evaluation of the literature shows that there is no consistent support that impaired Ca++ metabolism, electron transport chain function and ultrastructure of mitochondria substantially contribute to liver failure. Moreover, our analysis suggests that the drop in ATP levels has protective rather than a deleterious character. Recent data suggest that the most critical mitochondrial event occurring upon SIRS is the release of mtROS in cytoplasm, which can activate two specific intracellular signaling cascades. The first is the mtROS-mediated activation of NADPH-oxidase in liver macrophages and endothelial cells; the second is the acceleration of the expression of inflammatory genes in hepatocytes. The signaling action of mtROS is strictly controlled in mitochondria at three points, (i) at the site of ROS generation at complex I, (ii) the site of mtROS release in cytoplasm via permeability transition pore, and (iii) interaction with specific kinases in cytoplasm. The systems controlling mtROS-signaling include pro- and anti-inflammatory mediators, nitric oxide, Ca2+ and NADPH-oxidase. Analysis of the literature suggests that further research should be focused on the impact of mtROS on organ failure induced by inflammation and simultaneously providing a new theoretical basis for a targeted therapy of overwhelmed inflammatory response.


Asunto(s)
Mitocondrias/metabolismo , Insuficiencia Multiorgánica/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Animales , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Humanos
12.
Surgery ; 161(6): 1696-1709, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28242089

RESUMEN

BACKGROUND: Methane is part of the gaseous environment of the intestinal lumen. The purpose of this study was to elucidate the bioactivity of exogenous methane on the intestinal barrier function in an antigen-independent model of acute inflammation. METHODS: Anesthetized rats underwent sham operation or 45-min occlusion of the superior mesenteric artery. A normoxic methane (2.2%)-air mixture was inhaled for 15 min at the end of ischemia and at the beginning of a 60-min or 180-min reperfusion. The integrity of the epithelial barrier of the ileum was assessed by determining the lumen-to-blood clearance of fluorescent dextran, while microvascular permeability changes were detected by the Evans blue technique. Tissue levels of superoxide, nitrotyrosine, myeloperoxidase, and endothelin-1 were measured, the superficial mucosal damage was visualized and quantified, and the serosal microcirculation and mesenteric flow was recorded. Erythrocyte deformability and aggregation were tested in vitro. RESULTS: Reperfusion significantly increased epithelial permeability, worsened macro- and microcirculation, increased the production of proinflammatory mediators, and resulted in a rapid loss of the epithelium. Exogenous normoxic methane inhalation maintained the superficial mucosal structure, decreased epithelial permeability, and improved local microcirculation, with a decrease in reactive oxygen and nitrogen species generation. Both the deformability and aggregation of erythrocytes improved with incubation of methane. CONCLUSION: Normoxic methane decreases the signs of oxidative and nitrosative stress, improves tissue microcirculation, and thus appears to modulate the ischemia-reperfusion-induced epithelial permeability changes. These findings suggest that the administration of exogenous methane may be a useful strategy for maintaining the integrity of the mucosa sustaining an oxido-reductive attack.


Asunto(s)
Permeabilidad Capilar/efectos de los fármacos , Íleon/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Metano/farmacología , Daño por Reperfusión/tratamiento farmacológico , Administración por Inhalación , Animales , Modelos Animales de Enfermedad , Endotelina-1/efectos de los fármacos , Endotelina-1/metabolismo , Íleon/metabolismo , Inmunohistoquímica , Mucosa Intestinal/metabolismo , Masculino , Arteria Mesentérica Superior/cirugía , Estrés Oxidativo/efectos de los fármacos , Peroxidasa/efectos de los fármacos , Peroxidasa/metabolismo , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Valores de Referencia , Daño por Reperfusión/patología
13.
Magn Reson Med ; 77(6): 2372-2380, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27368066

RESUMEN

PURPOSE: To develop an assay that can enable the quantification of intra- and extracellular nitric oxide (NO) levels in liver biopsies without application of potentially harmful exogenous NO traps. THEORY: Electron paramagnetic resonance (EPR) spectroscopy is currently the most appropriate method of measuring NO in biological samples due to the outstanding specificity resulting from the interaction of NO with exogenous NO traps. Because such traps are not allowed in clinical settings, we tested the reliability of endogenous NO traps for the determination of NO levels in blood and liver compartments. METHODS: Rats were injected with 0-8 mg/kg lipopolysaccharide (LPS) to gradually induce a systemic inflammatory response. Specific features of NO-hemoglobin and NO-Fe EPR signals were quantified using a specifically developed calibration procedure. RESULTS: Whereas both NO-hemoglobin (NO-HbLIVER BLOOD ) and NO-Fe (NO-FeLIVER ) complexes were detected in nonperfused liver tissue, only NO-Fe complexes were detected in perfused tissue and only NO-Hb complexes were detected in blood (NO-HbBLOOD ). The NO concentrations increased in the sequence NO-HbBLOOD < NO-FeLIVER < NO-HbLIVER BLOOD (9.4, 18.5, 27.9 nmol/cm3 , respectively at 2.5 mg/kg LPS). The detection limit of the method was 0.61 nmol/cm3 for NO-Hb and 0.52 nmol/cm3 for NO-Fe. CONCLUSION: The assay reported here does not influence natural NO pathways and enables the quantification of NO distribution in two liver compartments using a single liver biopsy. Magn Reson Med 77:2372-2380, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón/métodos , Líquido Extracelular/química , Hepatitis/metabolismo , Líquido Intracelular/química , Hígado/química , Hígado/patología , Óxido Nítrico/análisis , Animales , Biomarcadores/análisis , Biopsia , Células Cultivadas , Masculino , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...