Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 24(10): 3014-3020, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38427697

RESUMEN

Knowledge of the atomic structure of layer-stacked two-dimensional conjugated metal-organic frameworks (2D c-MOFs) is an essential prerequisite for establishing their structure-property correlation. For this, atomic resolution imaging is often the method of choice. In this paper, we gain a better understanding of the main properties contributing to the electron beam resilience and the achievable resolution in the high-resolution TEM images of 2D c-MOFs, which include chemical composition, density, and conductivity of the c-MOF structures. As a result, sub-angstrom resolution of 0.95 Å has been achieved for the most stable 2D c-MOF of the considered structures, Cu3(BHT) (BHT = benzenehexathiol), at an accelerating voltage of 80 kV in a spherical and chromatic aberration-corrected TEM. Complex damage mechanisms induced in Cu3(BHT) by the elastic interactions with the e-beam have been explained using detailed ab initio molecular dynamics calculations. Experimental and calculated knock-on damage thresholds are in good agreement.

2.
Angew Chem Int Ed Engl ; : e202316299, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38422222

RESUMEN

Vinylene-linked two-dimensional polymers (V-2DPs) and their layer-stacked covalent organic frameworks (V-2D COFs) featuring high in-plane π-conjugation and robust frameworks have emerged as promising candidates for energy-related applications. However, current synthetic approaches are restricted to producing V-2D COF powders that lack processability, impeding their integration into devices, particularly within membrane technologies reliant upon thin films. Herein, we report the novel on-water surface synthesis of vinylene-linked cationic 2DPs films (V-C2DP-1 and V-C2DP-2) via Knoevenagel polycondensation, which serve as the anion-selective electrode coating for highly-reversible and durable zinc-based dual-ion batteries (ZDIBs). Model reactions and theoretical modeling revealed the enhanced reactivity and reversibility of the Knoevenagel reaction on the water surface. On this basis, we demonstrated the on-water surface 2D polycondensation towards V-C2DPs films that show large lateral size, tunable thickness, and high chemical stability. Representatively, V-C2DP-1 presents as a fully crystalline and face-on oriented film with in-plane lattice parameters of a=b≈43.3 Å. Profiting from its well-defined cationic sites, oriented 1D channels, and stable frameworks, V-C2DP-1 film possesses superior bis(trifluoromethanesulfonyl)imide anion (TFSI-)-transport selectivity (transference, t_=0.85) for graphite cathode in high-voltage ZDIBs, thus triggering additional TFSI--intercalation stage and promoting its specific capacity (from ~83 to 124 mAh g-1) and cycling life (>1000 cycles, 95 % capacity retention).

3.
Angew Chem Int Ed Engl ; 63(3): e202313591, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38011010

RESUMEN

Two-dimensional conjugated metal-organic frameworks (2D c-MOFs) are emerging as a unique subclass of layer-stacked crystalline coordination polymers that simultaneously possess porous and conductive properties, and have broad application potential in energy and electronic devices. However, to make the best use of the intrinsic electronic properties and structural features of 2D c-MOFs, the controlled synthesis of hierarchically nanostructured 2D c-MOFs with high crystallinity and customized morphologies is essential, which remains a great challenge. Herein, we present a template strategy to synthesize a library of 2D c-MOFs with controlled morphologies and dimensions via insulating MOFs-to-c-MOFs transformations. The resultant hierarchically nanostructured 2D c-MOFs feature intrinsic electrical conductivity and higher surface areas than the reported bulk-type 2D c-MOFs, which are beneficial for improved access to active sites and enhanced mass transport. As proof-of-concept applications, the hierarchically nanostructured 2D c-MOFs exhibit a superior performance for electrical properties related applications (hollow Cu-BHT nanocubes-based supercapacitor and Cu-HHB nanoflowers-based chemiresistive gas sensor), achieving over 225 % and 250 % improvement in specific capacity and response intensity over the corresponding bulk type c-MOFs, respectively.

4.
Small ; : e2306732, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38073322

RESUMEN

Currently, most reported 2D conjugated metal-organic frameworks (2D c-MOFs) are based on planar polycyclic aromatic hydrocarbons (PAHs) with symmetrical functional groups, limiting the possibility of introducing additional substituents to fine-tune the crystallinity and electrical properties. Herein, a novel class of wavy 2D c-MOFs with highly substituted, core-twisted hexahydroxy-hexa-cata-benzocoronenes (HH-cHBCs) as ligands is reported. By tailoring the substitution of the c-HBC ligands with electron-withdrawing groups (EWGs), such as fluorine, chlorine, and bromine, it is demonstrated that the crystallinity and electrical conductivity at the molecular level can be tuned. The theoretical calculations demonstrate that F-substitution leads to a more reversible coordination bonding between HH-cHBCs and copper metal center, due to smaller atomic size and stronger electron-withdrawing effect. As a result, the achieved F-substituted 2D c-MOF exhibits superior crystallinity, comprising ribbon-like single crystals up to tens of micrometers in length. Moreover, the F-substituted 2D c-MOF displays higher electrical conductivity (two orders of magnitude) and higher charge carrier mobility (almost three times) than the Cl-substituted one. This work provides a new molecular design strategy for the development of wavy 2D c-MOFs and opens a new route for tailoring the coordination reversibility by ligand substitution toward increased crystallinity and superior electric conductivity.

5.
J Am Chem Soc ; 145(43): 23630-23638, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37852932

RESUMEN

Two-dimensional conjugated metal-organic frameworks (2D c-MOFs) have emerged as a new class of crystalline layered conducting materials that hold significant promise for applications in electronics and spintronics. However, current 2D c-MOFs are mainly made from organic planar ligands, whereas layered 2D c-MOFs constructed by curved or twisted ligands featuring novel orbital structures and electronic states remain less developed. Herein, we report a Cu-catecholate wavy 2D c-MOF (Cu3(HFcHBC)2) based on a fluorinated core-twisted contorted hexahydroxy-hexa-cata-hexabenzocoronene (HFcHBC) ligand. We show that the resulting film is composed of rod-like single crystals with lengths up to ∼4 µm. The crystal structure is resolved by high-resolution transmission electron microscopy (HRTEM) and continuous rotation electron diffraction (cRED), indicating a wavy honeycomb lattice with AA-eclipsed stacking. Cu3(HFcHBC)2 is predicted to be metallic based on theoretical calculation, while the crystalline film sample with numerous grain boundaries apparently exhibits semiconducting behavior at the macroscopic scale, characterized by obvious thermally activated conductivity. Temperature-dependent electrical conductivity measurements on the isolated single-crystal devices indeed demonstrate the metallic nature of Cu3(HFcHBC)2, with a very weak thermally activated transport behavior and a room-temperature conductivity of 5.2 S cm-1. Furthermore, the 2D c-MOFs can be utilized as potential electrode materials for energy storage, which display decent capacity (163.3 F g-1) and excellent cyclability in an aqueous 5 M LiCl electrolyte. Our work demonstrates that wavy 2D c-MOF using contorted ligands are capable of intrinsic metallic transport, marking the emergence of new conductive MOFs for electronic and energy applications.

6.
Micron ; 174: 103525, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37595407

RESUMEN

Despite the exceptional resolution in aberration-corrected high-resolution transmission electron microscope (AC-HRTEM) images of inorganic two-dimensional (2D) materials, achieving high-resolution imaging of organic 2D materials remains a daunting challenge due to their low electron resilience. Optimizing the critical dose (the electron exposure, the material can accept before it is noticeably damaged) is vital to mitigate this challenge. An understanding of electron resilience in porous crystalline 2D polymers including the effect of sample thickness has not been derived thus far. It is assumed, that additional layers of the sample form a cage around inner layers, which are preventing fragments from escaping into the vacuum and enabling recombination. In the literature this so called caging effect has been reported for perylene and pythalocyanine. In this work we determine the critical dose of a porous, triazine-based 2D polymer as function of the sample thickness. The results show that the caging effect should not be generalized to more sophisticated polymer systems. We argue that pore channels in the framework structure serve as escape routes for free fragments preventing the caging effect and thus showing surprisingly a thickness-independent critical dose. Moreover, we demonstrate that graphene encapsulation prevents fragment escape and results in an increase in the critical electron dose and unit-cell image resolution.

7.
Nat Commun ; 13(1): 3948, 2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35803950

RESUMEN

Despite superb instrumental resolution in modern transmission electron microscopes (TEM), high-resolution imaging of organic two-dimensional (2D) materials is a formidable task. Here, we present that the appropriate selection of the incident electron energy plays a crucial role in reducing the gap between achievable resolution in the image and the instrumental limit. Among a broad range of electron acceleration voltages (300 kV, 200 kV, 120 kV, and 80 kV) tested, we found that the highest resolution in the HRTEM image is achieved at 120 kV, which is 1.9 Å. In two imine-based 2D polymer thin films, unexpected molecular interstitial defects were unraveled. Their structural nature is identified with the aid of quantum mechanical calculations. Furthermore, the increased image resolution and enhanced image contrast at 120 kV enabled the detection of functional groups at the pore interfaces. The experimental setup has also been employed for an amorphous organic 2D material.

8.
J Am Chem Soc ; 144(27): 12219-12228, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35729777

RESUMEN

Nanostructure-based functions are omnipresent in nature and essential for the diversity of life. Unlike small molecules, which are often inhibitors of enzymes or biomimetics with established methods of elucidation, we show that functions of nanoscale structures in cells are complex and can implicate system-level effects such as the regulation of energy and redox homeostasis. Herein, we design a platinum(II)-containing tripeptide that assembles into intracellular fibrillar nanostructures upon molecular rearrangement in the presence of endogenous H2O2. The formed nanostructures blocked metabolic functions, including aerobic glycolysis and oxidative phosphorylation, thereby shutting down ATP production. As a consequence, ATP-dependent actin formation and glucose metabolite-dependent histone deacetylase activity are downregulated. We demonstrate that assembly-driven nanomaterials offer a rich avenue to achieve broad-spectrum bioactivities that could provide new opportunities in drug discovery.


Asunto(s)
Nanoestructuras , Platino (Metal) , Adenosina Trifosfato/metabolismo , Metabolismo Energético , Homeostasis , Peróxido de Hidrógeno , Nanoestructuras/química
9.
J Am Chem Soc ; 144(23): 10291-10300, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35657204

RESUMEN

As covalent organic frameworks (COFs) are coming of age, the lack of effective approaches to achieve crystalline and centimeter-scale-homogeneous COF films remains a significant bottleneck toward advancing the application of COFs in optoelectronic devices. Here, we present the synthesis of colloidal COF nanoplates, with lateral sizes of ∼200 nm and average heights of 35 nm, and their utilization as photocathodes for solar hydrogen evolution. The resulting COF nanoplate colloid exhibits a unimodal particle-size distribution and an exceptional colloidal stability without showing agglomeration after storage for 10 months and enables smooth, homogeneous, and thickness-tunable COF nanofilms via spin coating. Photoelectrodes comprising COF nanofilms were fabricated for photoelectrochemical (PEC) solar-to-hydrogen conversion. By rationally designing multicomponent photoelectrode architectures including a polymer donor/COF heterojunction and a hole-transport layer, charge recombination in COFs is mitigated, resulting in a significantly increased photocurrent density and an extremely positive onset potential for PEC hydrogen evolution (over +1 V against the reversible hydrogen electrode), among the best of classical semiconductor-based photocathodes. This work thus paves the way toward fabricating solution-processed large-scale COF nanofilms and heterojunction architectures and their use in solar-energy-conversion devices.

10.
J Am Chem Soc ; 143(15): 5636-5642, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33848155

RESUMEN

A two-dimensional polymer (2DP) single crystal (T-2DP) with submillimeter size was synthesized by single-crystal to single-crystal transformation based on photochemical [2 + 2]-cycloaddition. A successful conversion from monomer to polymer was achieved in the single-crystal state. The structure information with an atomic resolution of both the monomer and 2DP was given through single-crystal X-ray diffraction. By simply treated with trifluoroacetic acid (TFA) under mild conditions, an unprecedented efficiency of exfoliation was achieved. The triazine core in T-2DP could be protonated by TFA, which resulted in a solution-like sample with >60% of monolayers. The size of the exfoliated monolayer reaches to several hundreds of µm2. This is another precious example of 2DP single crystal with nearly perfect structure and large enough size. The successful preparation of the highly desirable 2DP "solution" for a long time containing large sized and large amount of 2DP monolayers may open up new prospects for the basic properties study and the applications of 2DPs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...