Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Struct Mol Biol ; 31(7): 1023-1027, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38528151

RESUMEN

Histone H2A monoubiquitination (H2Aub1) by the PRC1 subunit RING1B entails a positive feedback loop, mediated by the RING1B-interacting protein RYBP. We uncover that human RYBP-PRC1 binds unmodified nucleosomes via RING1B but H2Aub1-modified nucleosomes via RYBP. RYBP interactions with both ubiquitin and the nucleosome acidic patch create the high binding affinity that favors RYBP- over RING1B-directed PRC1 binding to H2Aub1-modified nucleosomes; this enables RING1B to monoubiquitinate H2A in neighboring unmodified nucleosomes.


Asunto(s)
Histonas , Nucleosomas , Complejo Represivo Polycomb 1 , Proteínas Represoras , Ubiquitinación , Humanos , Histonas/metabolismo , Histonas/química , Nucleosomas/metabolismo , Nucleosomas/química , Complejo Represivo Polycomb 1/metabolismo , Complejo Represivo Polycomb 1/química , Proteínas Represoras/metabolismo , Proteínas Represoras/química , Unión Proteica , Modelos Moleculares , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/química , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/química , Proteínas de Ciclo Celular
2.
Genes Dev ; 36(19-20): 1046-1061, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36357125

RESUMEN

The Polycomb repressive complexes PRC1, PRC2, and PR-DUB repress target genes by modifying their chromatin. In Drosophila, PRC1 compacts chromatin and monoubiquitinates histone H2A at lysine 118 (H2Aub1), whereas PR-DUB is a major H2Aub1 deubiquitinase, but how H2Aub1 levels must be balanced for Polycomb repression remains unclear. We show that in early embryos, H2Aub1 is enriched at Polycomb target genes, where it facilitates H3K27me3 deposition by PRC2 to mark genes for repression. During subsequent stages of development, H2Aub1 becomes depleted from these genes and is no longer enriched when Polycomb maintains them repressed. Accordingly, Polycomb targets remain repressed in H2Aub1-deficient animals. In PR-DUB catalytic mutants, high levels of H2Aub1 accumulate at Polycomb target genes, and Polycomb repression breaks down. These high H2Aub1 levels do not diminish Polycomb protein complex binding or H3K27 trimethylation but increase DNA accessibility. We show that H2Aub1 interferes with nucleosome stacking and chromatin fiber folding in vitro. Consistent with this, Polycomb repression defects in PR-DUB mutants are exacerbated by reducing PRC1 chromatin compaction activity, but Polycomb repression is restored if PRC1 E3 ligase activity is removed. PR-DUB therefore acts as a rheostat that removes excessive H2Aub1 that, although deposited by PRC1, antagonizes PRC1-mediated chromatin compaction.


Asunto(s)
Cromatina , Proteínas de Drosophila , Animales , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo , Histonas/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Nucleosomas , Drosophila/genética , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/metabolismo
3.
Genetics ; 219(1)2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-34849913

RESUMEN

The Drosophila proteins Pleiohomeotic (Pho) and its paralog Pho-like (Phol) are the homologs of the mammalian transcription factor YY1. Pho and Phol are subunits of the Polycomb group protein complex PhoRC and they are also stably associated with the INO80 nucleosome remodeling complex. Drosophila lacking both Pho and Phol arrest development as larvae with small misshaped imaginal discs. The basis of this phenotype is poorly understood. We find that in pho phol mutant animals cells retain the capacity to proliferate but show a high incidence of apoptotic cell death that results in tissue hypoplasia. Clonal analyses establish that cells stringently require Pho and Phol to survive. In contrast, the PhoRC subunit Sfmbt and the ATP-dependent nucleosome remodeling factor Ino80 are not essential for cell viability. Pho and Phol, therefore, execute their critical role for cell survival through mechanisms that do not involve Sfmbt function or INO80 nucleosome remodeling.


Asunto(s)
Drosophila , Animales
4.
Elife ; 92020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-33211010

RESUMEN

Repression of genes by Polycomb requires that PRC2 modifies their chromatin by trimethylating lysine 27 on histone H3 (H3K27me3). At transcriptionally active genes, di- and tri-methylated H3K36 inhibit PRC2. Here, the cryo-EM structure of PRC2 on dinucleosomes reveals how binding of its catalytic subunit EZH2 to nucleosomal DNA orients the H3 N-terminus via an extended network of interactions to place H3K27 into the active site. Unmodified H3K36 occupies a critical position in the EZH2-DNA interface. Mutation of H3K36 to arginine or alanine inhibits H3K27 methylation by PRC2 on nucleosomes in vitro. Accordingly, Drosophila H3K36A and H3K36R mutants show reduced levels of H3K27me3 and defective Polycomb repression of HOX genes. The relay of interactions between EZH2, the nucleosomal DNA and the H3 N-terminus therefore creates the geometry that permits allosteric inhibition of PRC2 by methylated H3K36 in transcriptionally active chromatin.


Asunto(s)
Proteínas de Drosophila/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Animales , Baculoviridae , Dominio Catalítico , Línea Celular , Microscopía por Crioelectrón , Proteínas de Drosophila/genética , Drosophila melanogaster , Regulación de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Metilación , Modelos Moleculares , Mutación , Conformación Proteica , Procesamiento Proteico-Postraduccional , Xenopus
5.
Dev Cell ; 51(5): 632-644.e6, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31630981

RESUMEN

Gene transcription in eukaryotes is regulated through dynamic interactions of a variety of different proteins with DNA in the context of chromatin. Here, we used mass spectrometry for absolute quantification of the nuclear proteome and methyl marks on selected lysine residues in histone H3 during two stages of Drosophila embryogenesis. These analyses provide comprehensive information about the absolute copy number of several thousand proteins and reveal unexpected relationships between the abundance of histone-modifying and -binding proteins and the chromatin landscape that they generate and interact with. For some histone modifications, the levels in Drosophila embryos are substantially different from those previously reported in tissue culture cells. Genome-wide profiling of H3K27 methylation during developmental progression and in animals with reduced PRC2 levels illustrates how mass spectrometry can be used for quantitatively describing and comparing chromatin states. Together, these data provide a foundation toward a quantitative understanding of gene regulation in Drosophila.


Asunto(s)
Ensamble y Desensamble de Cromatina , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Código de Histonas , Animales , Cromatina/genética , Cromatina/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/genética , Histonas/metabolismo , Proteoma/genética , Proteoma/metabolismo
6.
Structure ; 27(5): 846-852.e3, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30827841

RESUMEN

Human ASH1L is the catalytic subunit of the conserved histone methyltransferase (HMTase) complex AMC that dimethylates lysine 36 in histone H3 (H3K36me2) to promote gene transcription in mammals and flies. Unlike AMC, ASH1L alone shows poor catalytic activity, because access to its substrate binding pocket is blocked by an autoinhibitory loop (AI loop) from the postSET domain. We report the crystal structure of the minimal catalytic active AMC complex containing ASH1L and its partner subunit MRG15. The structure reveals how binding of the MRG domain of MRG15 to a conserved FxLP motif in ASH1L results in the displacement of the AI loop to permit substrates to access the catalytic pocket of the ASH1L SET domain. Together, ASH1L activation by MRG15 therefore represents a delicate regulatory mechanism for how a cofactor activates an SET domain HMTase by releasing autoinhibition.


Asunto(s)
Proteínas de Unión al ADN/química , N-Metiltransferasa de Histona-Lisina/química , Factores de Transcripción/química , Secuencias de Aminoácidos , Animales , Cristalografía por Rayos X , Histonas/química , Humanos , Nucleosomas/química , Unión Proteica , Xenopus
7.
Proc Natl Acad Sci U S A ; 115(52): 13336-13341, 2018 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-30530664

RESUMEN

Acetylation of histone H4 at lysine 16 (H4K16) modulates nucleosome-nucleosome interactions and directly affects nucleosome binding by certain proteins. In Drosophila, H4K16 acetylation by the dosage compensation complex subunit Mof is linked to increased transcription of genes on the single X chromosome in males. Here, we analyzed Drosophila containing different H4K16 mutations or lacking Mof protein. An H4K16A mutation causes embryonic lethality in both sexes, whereas an H4K16R mutation permits females to develop into adults but causes lethality in males. The acetyl-mimic mutation H4K16Q permits both females and males to develop into adults. Complementary analyses reveal that males lacking maternally deposited and zygotically expressed Mof protein arrest development during gastrulation, whereas females of the same genotype develop into adults. Together, this demonstrates the causative role of H4K16 acetylation by Mof for dosage compensation in Drosophila and uncovers a previously unrecognized requirement for this process already during the onset of zygotic gene transcription.


Asunto(s)
Compensación de Dosificación (Genética)/genética , Histonas/genética , Acetilación , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Femenino , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Lisina/genética , Masculino , Proteínas Nucleares/metabolismo , Nucleosomas/metabolismo , Fenotipo , Mutación Puntual/genética , Procesamiento Proteico-Postraduccional/genética , Sexo , Factores Sexuales , Factores de Transcripción/metabolismo , Cromosoma X/metabolismo
8.
Development ; 145(7)2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29540501

RESUMEN

The Drosophila Ash1 protein is a trithorax-group (trxG) regulator that antagonizes Polycomb repression at HOX genes. Ash1 di-methylates lysine 36 in histone H3 (H3K36me2) but how this activity is controlled and at which genes it functions is not well understood. We show that Ash1 protein purified from Drosophila exists in a complex with MRG15 and Caf1 that we named AMC. In Drosophila and human AMC, MRG15 binds a conserved FxLP motif near the Ash1 SET domain and stimulates H3K36 di-methylation on nucleosomes. Drosophila MRG15-null and ash1 catalytic mutants show remarkably specific trxG phenotypes: stochastic loss of HOX gene expression and homeotic transformations in adults. In mutants lacking AMC, H3K36me2 bulk levels appear undiminished but H3K36me2 is reduced in the chromatin of HOX and other AMC-regulated genes. AMC therefore appears to act on top of the H3K36me2/me3 landscape generated by the major H3K36 methyltransferases NSD and Set2. Our analyses suggest that H3K36 di-methylation at HOX genes is the crucial physiological function of AMC and the mechanism by which the complex antagonizes Polycomb repression at these genes.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Metilación de ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Factores de Transcripción/metabolismo , Animales , Western Blotting , Proteínas de Unión al ADN/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Perfilación de la Expresión Génica , Genes Homeobox/genética , Humanos , Lisina/metabolismo , Espectrometría de Masas , Proteína 4 de Unión a Retinoblastoma/metabolismo , Factores de Transcripción/genética
9.
Genetics ; 208(2): 633-637, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29247011

RESUMEN

The trimethylation of histone H3 at lysine 27 (H3K27me3) by Polycomb Repressive Complex 2 (PRC2) is essential for the repression of Polycomb target genes. However, the role of enzymatic demethylation of H3K27me3 by the KDM6-family demethylases Utx, Uty, and JmjD3 is less clear. Studies in both mice and worms led to the proposal that KDM6 proteins, but not their H3K27me3 demethylase activity, is critical for normal development. Here, we investigated the requirement of the demethylase activity of the single KDM6 family member Utx in Drosophila We generated Drosophila expressing a full-length but catalytically inactive Utx protein and found that these mutants show the same phenotypes as animals lacking the Utx protein. Specifically, animals lacking maternally deposited active Utx demethylase in the early embryo show stochastic loss of HOX gene expression that appears to be propagated in a clonal fashion. This suggests that Utx demethylase activity is critical for the removal of ectopic H3K27 trimethylation from active HOX genes during the onset of zygotic gene transcription, and thereby prevents the inappropriate installment of long-term repression by Polycomb. Conversely, maternally deposited catalytically active Utx protein suffices to permit animals that lack zygotic expression of enzymatically active Utx to develop into morphologically normal adults, which eclose from the pupal case but die shortly thereafter. Utx demethylase activity is therefore also essential to sustain viability in adult flies. Together, these analyses identify the earliest embryonic stages and the adult stage as two phases during the Drosophila life cycle that critically require H3K27me3 demethylase activity.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/genética , Drosophila/metabolismo , Regulación de la Expresión Génica , Proteínas de Homeodominio/genética , Oxidorreductasas N-Desmetilantes/metabolismo , Animales , Supervivencia Celular/genética , Codón , Proteínas de Drosophila/química , Exones , Histonas/metabolismo , Metilación , Mutación , Oxidorreductasas N-Desmetilantes/química , Transgenes
10.
Nat Struct Mol Biol ; 24(12): 1039-1047, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29058710

RESUMEN

Polycomb repressive complex 2 (PRC2) trimethylates histone H3 at lysine 27 to mark genes for repression. We measured the dynamics of PRC2 binding on recombinant chromatin and free DNA at the single-molecule level using total internal reflection fluorescence (TIRF) microscopy. PRC2 preferentially binds free DNA with multisecond residence time and midnanomolar affinity. PHF1, a PRC2 accessory protein of the Polycomblike family, extends PRC2 residence time on DNA and chromatin. Crystallographic and functional studies reveal that Polycomblike proteins contain a winged-helix domain that binds DNA in a sequence-nonspecific fashion. DNA binding by this winged-helix domain accounts for the prolonged residence time of PHF1-PRC2 on chromatin and makes it a more efficient H3K27 methyltranferase than PRC2 alone. Together, these studies establish that interactions with DNA provide the predominant binding affinity of PRC2 for chromatin. Moreover, they reveal the molecular basis for how Polycomblike proteins stabilize PRC2 on chromatin and stimulate its activity.


Asunto(s)
Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Histonas/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Animales , Línea Celular , Cristalografía por Rayos X , Drosophila , Humanos , Metilación , Dominios Proteicos/genética , Células Sf9 , Spodoptera
11.
Science ; 356(6333): 85-88, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-28302792

RESUMEN

Epigenetic inheritance models posit that during Polycomb repression, Polycomb repressive complex 2 (PRC2) propagates histone H3 lysine 27 trimethylation (H3K27me3) independently of DNA sequence. We show that insertion of Polycomb response element (PRE) DNA into the Drosophila genome creates extended domains of H3K27me3-modified nucleosomes in the flanking chromatin and causes repression of a linked reporter gene. After excision of PRE DNA, H3K27me3 nucleosomes become diluted with each round of DNA replication, and reporter gene repression is lost. After excision in replication-stalled cells, H3K27me3 levels stay high and repression persists. H3K27me3-marked nucleosomes therefore provide a memory of repression that is transmitted in a sequence-independent manner to daughter strand DNA during replication. In contrast, propagation of H3K27 trimethylation to newly incorporated nucleosomes requires sequence-specific targeting of PRC2 to PRE DNA.


Asunto(s)
Cromatina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Elementos de Respuesta , Animales , ADN/genética , ADN/metabolismo , Replicación del ADN , Regulación de la Expresión Génica , Genes Homeobox , Genes Reporteros , Histonas/metabolismo , Lisina/metabolismo , Metilación , Nucleosomas/metabolismo
12.
Genes Dev ; 30(9): 1116-27, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-27151979

RESUMEN

Polycomb group (PcG) protein complexes repress transcription by modifying target gene chromatin. In Drosophila, this repression requires association of PcG protein complexes with cis-regulatory Polycomb response elements (PREs), but the interactions permitting formation of these assemblies are poorly understood. We show that the Sfmbt subunit of the DNA-binding Pho-repressive complex (PhoRC) and the Scm subunit of the canonical Polycomb-repressive complex 1 (PRC1) directly bind each other through their SAM domains. The 1.9 Å crystal structure of the Scm-SAM:Sfmbt-SAM complex reveals the recognition mechanism and shows that Sfmbt-SAM lacks the polymerization capacity of the SAM domains of Scm and its PRC1 partner subunit, Ph. Functional analyses in Drosophila demonstrate that Sfmbt-SAM and Scm-SAM are essential for repression and that PhoRC DNA binding is critical to initiate PRC1 association with PREs. Together, this suggests that PRE-tethered Sfmbt-SAM nucleates PRC1 recruitment and that Scm-SAM/Ph-SAM-mediated polymerization then results in the formation of PRC1-compacted chromatin.


Asunto(s)
Drosophila melanogaster/metabolismo , Regulación de la Expresión Génica/fisiología , Modelos Moleculares , Complejo Represivo Polycomb 1/química , Complejo Represivo Polycomb 1/metabolismo , Proteínas del Grupo Polycomb/metabolismo , Elementos de Respuesta/fisiología , Animales , Cromatina/metabolismo , Cristalografía , Proteínas de Drosophila/química , Proteínas de Drosophila/aislamiento & purificación , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/química , Drosophila melanogaster/genética , Complejo Represivo Polycomb 1/aislamiento & purificación , Proteínas del Grupo Polycomb/química , Proteínas del Grupo Polycomb/aislamiento & purificación , Polimerizacion , Unión Proteica , Estructura Terciaria de Proteína
14.
Genes Dev ; 29(14): 1487-92, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26178786

RESUMEN

Histone H2A monoubiquitylation (H2Aub) is considered to be a key effector in transcriptional repression by Polycomb-repressive complex 1 (PRC1). We analyzed Drosophila with a point mutation in the PRC1 subunit Sce that abolishes its H2A ubiquitylase activity or with point mutations in the H2A and H2Av residues ubiquitylated by PRC1. H2Aub is essential for viability and required for efficient histone H3 Lys27 trimethylation by PRC2 early in embryogenesis. However, H2Aub-deficient animals fully maintain repression of PRC1 target genes and do not show phenotypes characteristic of Polycomb group mutants. PRC1 thus represses canonical target genes independently of H2Aub.


Asunto(s)
Proteínas de Drosophila , Drosophila/embriología , Drosophila/genética , Regulación del Desarrollo de la Expresión Génica , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/metabolismo , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Histonas/genética , Histonas/metabolismo , Metamorfosis Biológica/genética , Mutación , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
15.
Chromosoma ; 124(4): 429-42, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25894967

RESUMEN

O-linked ß-N-Acetylglucosamine (O-GlcNAc) is a posttranslational modification that is catalyzed by O-GlcNAc transferase (Ogt) and found on a plethora of nuclear and cytosolic proteins in animals and plants. Studies in different model organisms revealed that while O-GlcNAc is required for selected processes in Caenorhabditis elegans and Drosophila, it has evolved to become required for cell viability in mice, and this has challenged investigations to identify cellular functions that critically require this modification in mammals. Nevertheless, a principal cellular process that engages O-GlcNAcylation in all of these species is the regulation of gene transcription. Here, we revisit several of the primary experimental observations that led to current models of how O-GlcNAcylation affects gene expression. In particular, we discuss the role of the stable association of Ogt with the transcription factors Hcf1 and Tet, the two main Ogt-interacting proteins in nuclei of mammalian cells. We also critically evaluate the evidence that specific residues on core histones, including serine 112 of histone 2B (H2B-S112), are O-GlcNAcylated in vivo and discuss possible physiological effects of these modifications. Finally, we review our understanding of the role of O-GlcNAcylation in Drosophila, where recent studies suggest that the developmental defects in Ogt mutants are all caused by lack of O-GlcNAcylation of a single transcriptional regulator, the Polycomb repressor protein Polyhomeotic (Ph). Collectively, this reexamination of the experimental evidence suggests that a number of recently propagated models about the role of O-GlcNAcylation in transcriptional control should be treated cautiously.


Asunto(s)
Cromatina/metabolismo , Regulación de la Expresión Génica , Histonas/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Animales , Proteínas de Unión al ADN , Proteínas de Drosophila , Humanos , N-Acetilglucosaminiltransferasas/fisiología , Complejo Represivo Polycomb 1 , Procesamiento Proteico-Postraduccional
16.
Dev Cell ; 31(5): 629-39, 2014 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-25468754

RESUMEN

The glycosyltransferase Ogt adds O-linked N-Acetylglucosamine (O-GlcNAc) moieties to nuclear and cytosolic proteins. Drosophila embryos lacking Ogt protein arrest development with a remarkably specific Polycomb phenotype, arising from the failure to repress Polycomb target genes. The Polycomb protein Polyhomeotic (Ph), an Ogt substrate, forms large aggregates in the absence of O-GlcNAcylation both in vivo and in vitro. O-GlcNAcylation of a serine/threonine (S/T) stretch in Ph is critical to prevent nonproductive aggregation of both Drosophila and human Ph via their C-terminal sterile alpha motif (SAM) domains in vitro. Full Ph repressor activity in vivo requires both the SAM domain and O-GlcNAcylation of the S/T stretch. We demonstrate that Ph mutants lacking the S/T stretch reproduce the phenotype of ogt mutants, suggesting that the S/T stretch in Ph is the key Ogt substrate in Drosophila. We propose that O-GlcNAcylation is needed for Ph to form functional, ordered assemblies via its SAM domain.


Asunto(s)
Acetilglucosamina/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Complejo Represivo Polycomb 1/metabolismo , Proteínas Represoras/metabolismo , Animales , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , Técnicas de Inactivación de Genes/métodos , Humanos , N-Acetilglucosaminiltransferasas/metabolismo , Complejo Represivo Polycomb 1/genética
18.
Nat Struct Mol Biol ; 21(6): 569-71, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24837194

RESUMEN

A key step in gene repression by Polycomb is trimethylation of histone H3 K27 by PCR2 to form H3K27me3. H3K27me3 provides a binding surface for PRC1. We show that monoubiquitination of histone H2A by PRC1-type complexes to form H2Aub creates a binding site for Jarid2-Aebp2-containing PRC2 and promotes H3K27 trimethylation on H2Aub nucleosomes. Jarid2, Aebp2 and H2Aub thus constitute components of a positive feedback loop establishing H3K27me3 chromatin domains.


Asunto(s)
Drosophila/genética , Represión Epigenética , Histonas/metabolismo , Proteínas del Grupo Polycomb/genética , Animales , Metilación , Ubiquitinación
19.
Genes Dev ; 27(21): 2367-79, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24186981

RESUMEN

Polycomb group (PcG) protein complexes repress developmental regulator genes by modifying their chromatin. How different PcG proteins assemble into complexes and are recruited to their target genes is poorly understood. Here, we report the crystal structure of the core of the Drosophila PcG protein complex Pleiohomeotic (Pho)-repressive complex (PhoRC), which contains the Polycomb response element (PRE)-binding protein Pho and Sfmbt. The spacer region of Pho, separated from the DNA-binding domain by a long flexible linker, forms a tight complex with the four malignant brain tumor (4MBT) domain of Sfmbt. The highly conserved spacer region of the human Pho ortholog YY1 binds three of the four human 4MBT domain proteins in an analogous manner but with lower affinity. Comparison of the Drosophila Pho:Sfmbt and human YY1:MBTD1 complex structures provides a molecular explanation for the lower affinity of YY1 for human 4MBT domain proteins. Structure-guided mutations that disrupt the interaction between Pho and Sfmbt abolish formation of a ternary Sfmbt:Pho:DNA complex in vitro and repression of developmental regulator genes in Drosophila. PRE tethering of Sfmbt by Pho is therefore essential for Polycomb repression in Drosophila. Our results support a model where DNA tethering of Sfmbt by Pho and multivalent interactions of Sfmbt with histone modifications and other PcG proteins create a hub for PcG protein complex assembly at PREs.


Asunto(s)
Proteínas de Drosophila/química , Drosophila melanogaster , Regulación del Desarrollo de la Expresión Génica , Modelos Moleculares , Proteínas del Grupo Polycomb/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/química , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Humanos , Datos de Secuencia Molecular , Mutación/genética , Proteínas del Grupo Polycomb/química , Proteínas del Grupo Polycomb/genética , Unión Proteica , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia , Factor de Transcripción YY1/química , Factor de Transcripción YY1/metabolismo
20.
Development ; 140(16): 3478-85, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23900545

RESUMEN

Trimethylation of histone H3 at lysine 27 (H3-K27me3) by Polycomb repressive complex 2 (PRC2) is a key step for transcriptional repression by the Polycomb system. Demethylation of H3-K27me3 by Utx and/or its paralogs has consequently been proposed to be important for counteracting Polycomb repression. To study the phenotype of Drosophila mutants that lack H3-K27me3 demethylase activity, we created Utx(Δ), a deletion allele of the single Drosophila Utx gene. Utx(Δ) homozygotes that contain maternally deposited wild-type Utx protein develop into adults with normal epidermal morphology but die shortly after hatching. By contrast, Utx(Δ) homozygotes that are derived from Utx mutant germ cells and therefore lack both maternal and zygotic Utx protein, die as larvae and show partial loss of expression of HOX genes in tissues in which these genes are normally active. This phenotype classifies Utx as a trithorax group regulator. We propose that Utx is needed in the early embryo to prevent inappropriate instalment of long-term Polycomb repression at HOX genes in cells in which these genes must be kept active. In contrast to PRC2, which is essential for, and continuously required during, germ cell, embryonic and larval development, Utx therefore appears to have a more limited and specific function during development. This argues against a continuous interplay between H3-K27me3 methylation and demethylation in the control of gene transcription in Drosophila. Furthermore, our analyses do not support the recent proposal that Utx would regulate cell proliferation in Drosophila as Utx mutant cells generated in wild-type animals proliferate like wild-type cells.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/enzimología , Regulación del Desarrollo de la Expresión Génica , Genes Homeobox , Genes de Insecto , Oxidorreductasas N-Desmetilantes/metabolismo , Alelos , Animales , Dominio Catalítico , Proliferación Celular , Metilación de ADN , Drosophila/embriología , Drosophila/genética , Proteínas de Drosophila/genética , Activación Enzimática , Femenino , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Homocigoto , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Masculino , Oxidorreductasas N-Desmetilantes/genética , Fenotipo , Factores de Tiempo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA