Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Haematologica ; 108(2): 543-554, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35522148

RESUMEN

Histone methylation-modifiers, such as EZH2 and KMT2D, are recurrently altered in B-cell lymphomas. To comprehensively describe the landscape of alterations affecting genes encoding histone methylation-modifiers in lymphomagenesis we investigated whole genome and transcriptome data of 186 mature B-cell lymphomas sequenced in the ICGC MMML-Seq project. Besides confirming common alterations of KMT2D (47% of cases), EZH2 (17%), SETD1B (5%), PRDM9 (4%), KMT2C (4%), and SETD2 (4%), also identified by prior exome or RNA-sequencing studies, we here found recurrent alterations to KDM4C in chromosome 9p24, encoding a histone demethylase. Focal structural variation was the main mechanism of KDM4C alterations, and was independent from 9p24 amplification. We also identified KDM4C alterations in lymphoma cell lines including a focal homozygous deletion in a classical Hodgkin lymphoma cell line. By integrating RNA-sequencing and genome sequencing data we predict that KDM4C structural variants result in loss-offunction. By functional reconstitution studies in cell lines, we provide evidence that KDM4C can act as a tumor suppressor. Thus, we show that identification of structural variants in whole genome sequencing data adds to the comprehensive description of the mutational landscape of lymphomas and, moreover, establish KDM4C as a putative tumor suppressive gene recurrently altered in subsets of B-cell derived lymphomas.


Asunto(s)
Linfoma de Células B , Linfoma , Humanos , Histonas/metabolismo , Histona Demetilasas/genética , Homocigoto , Eliminación de Secuencia , Linfoma/genética , Linfoma de Células B/genética , Secuenciación Completa del Genoma , ARN , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/química , Histona Demetilasas con Dominio de Jumonji/metabolismo , N-Metiltransferasa de Histona-Lisina/genética
2.
Development ; 145(6)2018 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-29490983

RESUMEN

In addition to its function as an inhibitor of histone acetyltransferases, Nir (Noc2l) binds to p53 and TAp63 to regulate their activity. Here, we show that epidermis-specific ablation of Nir impairs epidermal stratification and barrier function, resulting in perinatal lethality. Nir-deficient epidermis lacks appendages and remains single layered during embryogenesis. Cell proliferation is inhibited, whereas apoptosis and p53 acetylation are increased, indicating that Nir is controlling cell proliferation by limiting p53 acetylation. Transcriptome analysis revealed that Nir regulates the expression of essential factors in epidermis development, such as keratins, integrins and laminins. Furthermore, Nir binds to and controls the expression of p63 and limits H3K18ac at the p63 promoter. Corroborating the stratification defects, asymmetric cell divisions were virtually absent in Nir-deficient mice, suggesting that Nir is required for correct mitotic spindle orientation. In summary, our data define Nir as a key regulator of skin development.


Asunto(s)
Epidermis/metabolismo , Histona Acetiltransferasas/metabolismo , Proteínas Represoras/metabolismo , Animales , Apoptosis/genética , División Celular Asimétrica/genética , Técnicas de Cultivo de Célula , División Celular , Proliferación Celular/genética , Inmunoprecipitación de Cromatina , Epidermis/crecimiento & desarrollo , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Ratones , Fosfoproteínas/metabolismo , Transactivadores/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
3.
Cell Rep ; 17(4): 1008-1021, 2016 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-27760309

RESUMEN

Previous work indicated that lysine-specific demethylase 1 (Lsd1) can positively regulate the oxidative and thermogenic capacities of white and beige adipocytes. Here we investigate the role of Lsd1 in brown adipose tissue (BAT) and find that BAT-selective Lsd1 ablation induces a shift from oxidative to glycolytic metabolism. This shift is associated with downregulation of BAT-specific and upregulation of white adipose tissue (WAT)-selective gene expression. This results in the accumulation of di- and triacylglycerides and culminates in a profound whitening of BAT in aged Lsd1-deficient mice. Further studies show that Lsd1 maintains BAT properties via a dual role. It activates BAT-selective gene expression in concert with the transcription factor Nrf1 and represses WAT-selective genes through recruitment of the CoREST complex. In conclusion, our data uncover Lsd1 as a key regulator of gene expression and metabolic function in BAT.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Eliminación de Gen , Histona Demetilasas/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Regulación de la Expresión Génica , Glucosa/metabolismo , Glucólisis/genética , Metabolismo de los Lípidos/genética , Ratones Noqueados , Modelos Biológicos , Oxidación-Reducción , Aumento de Peso
4.
Oncotarget ; 5(24): 12646-64, 2014 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-25504435

RESUMEN

The major threat in prostate cancer is the occurrence of metastases in androgen-independent tumor stage, for which no causative cure is available. Here we show that metastatic behavior of androgen-independent prostate tumor cells requires the protein-kinase-C-related kinase (PRK1/PKN1) in vitro and in vivo. PRK1 regulates cell migration and gene expression through its kinase activity, but does not affect cell proliferation. Transcriptome and interactome analyses uncover that PRK1 regulates expression of migration-relevant genes by interacting with the scaffold protein sperm-associated antigen 9 (SPAG9/JIP4). SPAG9 and PRK1 colocalize in human cancer tissue and are required for p38-phosphorylation and cell migration. Accordingly, depletion of either ETS domain-containing protein Elk-1 (ELK1), an effector of p38-signalling or p38 depletion hinders cell migration and changes expression of migration-relevant genes as observed upon PRK1-depletion. Importantly, a PRK1 inhibitor prevents metastases in mice, showing that the PRK1-pathway is a promising target to hamper prostate cancer metastases in vivo. Here we describe a novel mechanism controlling the metastatic behavior of PCa cells and identify PRK1 as a promising therapeutic target to treat androgen-independent metastatic prostate cancer.


Asunto(s)
Andrógenos/metabolismo , Movimiento Celular/fisiología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Proteína Quinasa C/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Proliferación Celular/fisiología , Humanos , Masculino , Ratones , Metástasis de la Neoplasia , Fosforilación , Neoplasias de la Próstata/genética , Proteína Quinasa C/genética , Transcriptoma , Transfección
5.
Mol Biol Cell ; 23(20): 3948-56, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22918945

RESUMEN

Mitochondria contain two membranes, the outer membrane and the inner membrane with folded cristae. The mitochondrial inner membrane organizing system (MINOS) is a large protein complex required for maintaining inner membrane architecture. MINOS interacts with both preprotein transport machineries of the outer membrane, the translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM). It is unknown, however, whether MINOS plays a role in the biogenesis of outer membrane proteins. We have dissected the interaction of MINOS with TOM and SAM and report that MINOS binds to both translocases independently. MINOS binds to the SAM complex via the conserved polypeptide transport-associated domain of Sam50. Mitochondria lacking mitofilin, the large core subunit of MINOS, are impaired in the biogenesis of ß-barrel proteins of the outer membrane, whereas mutant mitochondria lacking any of the other five MINOS subunits import ß-barrel proteins in a manner similar to wild-type mitochondria. We show that mitofilin is required at an early stage of ß-barrel biogenesis that includes the initial translocation through the TOM complex. We conclude that MINOS interacts with TOM and SAM independently and that the core subunit mitofilin is involved in biogenesis of outer membrane ß-barrel proteins.


Asunto(s)
Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/biosíntesis , Biosíntesis de Proteínas , Proteínas de Saccharomyces cerevisiae/biosíntesis , Saccharomyces cerevisiae/metabolismo , Eliminación de Gen , Proteínas Mitocondriales/química , Complejos Multiproteicos/aislamiento & purificación , Complejos Multiproteicos/metabolismo , Péptidos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Subunidades de Proteína/aislamiento & purificación , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/química
6.
Dev Cell ; 21(4): 694-707, 2011 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-21944719

RESUMEN

The mitochondrial inner membrane consists of two domains, inner boundary membrane and cristae membrane that are connected by crista junctions. Mitofilin/Fcj1 was reported to be involved in formation of crista junctions, however, different views exist on its function and possible partner proteins. We report that mitofilin plays a dual role. Mitofilin is part of a large inner membrane complex, and we identify five partner proteins as constituents of the mitochondrial inner membrane organizing system (MINOS) that is required for keeping cristae membranes connected to the inner boundary membrane. Additionally, mitofilin is coupled to the outer membrane and promotes protein import via the mitochondrial intermembrane space assembly pathway. Our findings indicate that mitofilin is a central component of MINOS and functions as a multifunctional regulator of mitochondrial architecture and protein biogenesis.


Asunto(s)
Membranas Intracelulares/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Biosíntesis de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Cromatografía de Afinidad , Humanos , Unión Proteica , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Transposasas/metabolismo
7.
J Cell Biol ; 194(3): 387-95, 2011 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-21825073

RESUMEN

The mitochondrial outer membrane contains translocase complexes for the import of precursor proteins. The translocase of the outer membrane complex functions as a general preprotein entry gate, whereas the sorting and assembly machinery complex mediates membrane insertion of ß-barrel proteins of the outer membrane. Several α-helical outer membrane proteins are known to carry multiple transmembrane segments; however, only limited information is available on the biogenesis of these proteins. We report that mitochondria lacking the mitochondrial import protein 1 (Mim1) are impaired in the biogenesis of multispanning outer membrane proteins, whereas overexpression of Mim1 stimulates their import. The Mim1 complex cooperates with the receptor Tom70 in binding of precursor proteins and promotes their insertion and assembly into the outer membrane. We conclude that the Mim1 complex plays a central role in the import of α-helical outer membrane proteins with multiple transmembrane segments.


Asunto(s)
Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Portadoras/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Factores de Transcripción/metabolismo
8.
Nature ; 464(7289): 792-6, 2010 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-20228790

RESUMEN

Demethylation at distinct lysine residues in histone H3 by lysine-specific demethylase 1 (LSD1) causes either gene repression or activation. As a component of co-repressor complexes, LSD1 contributes to target gene repression by removing mono- and dimethyl marks from lysine 4 of histone H3 (H3K4). In contrast, during androgen receptor (AR)-activated gene expression, LSD1 removes mono- and dimethyl marks from lysine 9 of histone H3 (H3K9). Yet, the mechanisms that control this dual specificity of demethylation are unknown. Here we show that phosphorylation of histone H3 at threonine 6 (H3T6) by protein kinase C beta I (PKCbeta(I), also known as PRKCbeta) is the key event that prevents LSD1 from demethylating H3K4 during AR-dependent gene activation. In vitro, histone H3 peptides methylated at lysine 4 and phosphorylated at threonine 6 are no longer LSD1 substrates. In vivo, PKCbeta(I) co-localizes with AR and LSD1 on target gene promoters and phosphorylates H3T6 after androgen-induced gene expression. RNA interference (RNAi)-mediated knockdown of PKCbeta(I) abrogates H3T6 phosphorylation, enhances demethylation at H3K4, and inhibits AR-dependent transcription. Activation of PKCbeta(I) requires androgen-dependent recruitment of the gatekeeper kinase protein kinase C (PKC)-related kinase 1 (PRK1). Notably, increased levels of PKCbeta(I) and phosphorylated H3T6 (H3T6ph) positively correlate with high Gleason scores of prostate carcinomas, and inhibition of PKCbeta(I) blocks AR-induced tumour cell proliferation in vitro and cancer progression of tumour xenografts in vivo. Together, our data establish that androgen-dependent kinase signalling leads to the writing of the new chromatin mark H3T6ph, which in consequence prevents removal of active methyl marks from H3K4 during AR-stimulated gene expression.


Asunto(s)
Histona Demetilasas/metabolismo , Histonas/química , Histonas/metabolismo , Proteína Quinasa C/metabolismo , Andrógenos/metabolismo , Andrógenos/farmacología , Animales , División Celular/efectos de los fármacos , Línea Celular Tumoral , Cromatina/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Histona Demetilasas/antagonistas & inhibidores , Humanos , Lisina/química , Lisina/metabolismo , Masculino , Metilación/efectos de los fármacos , Ratones , Ratones Desnudos , Ratones SCID , Fosforilación/efectos de los fármacos , Fosfotreonina/metabolismo , Regiones Promotoras Genéticas/genética , Neoplasias de la Próstata/enzimología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/deficiencia , Proteína Quinasa C/genética , Proteína Quinasa C beta , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Mol Biol Cell ; 20(10): 2530-9, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19297525

RESUMEN

The intermembrane space of mitochondria contains the specific mitochondrial intermembrane space assembly (MIA) machinery that operates in the biogenesis pathway of precursor proteins destined to this compartment. The Mia40 component of the MIA pathway functions as a receptor and binds incoming precursors, forming an essential early intermediate in the biogenesis of intermembrane space proteins. The elements that are crucial for the association of the intermembrane space precursors with Mia40 have not been determined. In this study, we found that a region within the Tim9 and Tim10 precursors, consisting of only nine amino acid residues, functions as a signal for the engagement of substrate proteins with the Mia40 receptor. Furthermore, the signal contains sufficient information to facilitate the transfer of proteins across the outer membrane to the intermembrane space. Thus, here we have identified the mitochondrial intermembrane space sorting signal required for delivery of proteins to the mitochondrial intermembrane space.


Asunto(s)
Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Señales de Clasificación de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Leucina/metabolismo , Proteínas de la Membrana/química , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Datos de Secuencia Molecular , Unión Proteica , Precursores de Proteínas/metabolismo , Transporte de Proteínas , Proteínas Recombinantes de Fusión/metabolismo , Proteínas de Saccharomyces cerevisiae/química
10.
J Cell Biol ; 183(2): 195-202, 2008 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-18852299

RESUMEN

The biogenesis of mitochondrial intermembrane space proteins depends on specific machinery that transfers disulfide bonds to precursor proteins. The machinery shares features with protein relays for disulfide bond formation in the bacterial periplasm and endoplasmic reticulum. A disulfide-generating enzyme/sulfhydryl oxidase oxidizes a disulfide carrier protein, which in turn transfers a disulfide to the substrate protein. Current views suggest that the disulfide carrier alternates between binding to the oxidase and the substrate. We have analyzed the cooperation of the disulfide relay components during import of precursors into mitochondria and identified a ternary complex of all three components. The ternary complex represents a transient and intermediate step in the oxidation of intermembrane space precursors, where the oxidase Erv1 promotes disulfide transfer to the precursor while both oxidase and precursor are associated with the disulfide carrier Mia40.


Asunto(s)
Disulfuros/metabolismo , Mitocondrias/enzimología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Complejos Multiproteicos/metabolismo , Oxidorreductasas/metabolismo , Precursores de Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Mutación , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro , Unión Proteica , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato
11.
J Biol Chem ; 283(44): 29723-9, 2008 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-18779329

RESUMEN

Mitochondrial precursor proteins are directed into the intermembrane space via two different routes, the presequence pathway and the redox-dependent MIA pathway. The pathways were assumed to be independent and transport different proteins. We report that the intermembrane space receptor Mia40 can switch between both pathways. In fungi, Mia40 is synthesized as large protein with an N-terminal presequence, whereas in metazoans and plants, Mia40 consists only of the conserved C-terminal domain. Human MIA40 and the C-terminal domain of yeast Mia40 (termed Mia40(core)) rescued the viability of Mia40-deficient yeast independently of the presence of a presequence. Purified Mia40(core) was imported into mitochondria via the MIA pathway. With cells expressing both full-length Mia40 and Mia40(core), we demonstrate that yeast Mia40 contains dual targeting information, directing the large precursor onto the presequence pathway and the smaller Mia40(core) onto the MIA pathway, raising interesting implications for the evolution of mitochondrial protein sorting.


Asunto(s)
Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Saccharomyces cerevisiae/química , Animales , Humanos , Potenciales de la Membrana , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/genética , Modelos Biológicos , Oxidación-Reducción , Filogenia , Estructura Terciaria de Proteína , Transporte de Proteínas/genética , Proteínas Recombinantes/química , Saccharomyces cerevisiae/metabolismo , Temperatura
12.
Biochim Biophys Acta ; 1783(4): 610-7, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17996737

RESUMEN

When thinking of the mitochondrial intermembrane space we envisage a small compartment that is bordered by the mitochondrial outer and inner membranes. Despite this somewhat simplified perception the intermembrane space has remained a central focus in mitochondrial biology. This compartment accommodates many proteinaceous factors that play critical roles in mitochondrial and cellular metabolism, including the regulation of programmed cell death and energy conversion. The mechanism by which intermembrane space proteins are transported into the organelle and folded remained largely unknown until recently. In pursuit of the answer to this question a novel machinery, the Mitochondrial Intermembrane Space Assembly machinery, exploiting a unique regulated thiol-disulfide exchange mechanism has been revealed. This exciting discovery has not only put in place novel concepts for the biogenesis of intermembrane space precursors but also raises important implications on the mechanisms involved in the generation and transfer of disulfide bonds.


Asunto(s)
Membranas Intracelulares/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Transporte de Proteínas
13.
Mol Biol Cell ; 19(1): 226-36, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17978092

RESUMEN

The mitochondrial intermembrane space contains chaperone complexes that guide hydrophobic precursor proteins through this aqueous compartment. The chaperones consist of hetero-oligomeric complexes of small Tim proteins with conserved cysteine residues. The precursors of small Tim proteins are synthesized in the cytosol. Import of the precursors requires the essential intermembrane space proteins Mia40 and Erv1 that were proposed to form a relay for disulfide formation in the precursor proteins. However, experimental evidence for a role of Mia40 and Erv1 in the oxidation of intermembrane space precursors has been lacking. We have established a system to directly monitor the oxidation of precursors during import into mitochondria and dissected distinct steps of the import process. Reduced precursors bind to Mia40 during translocation into mitochondria. Both Mia40 and Erv1 are required for formation of oxidized monomers of the precursors that subsequently assemble into oligomeric complexes. Whereas the reduced precursors can diffuse back into the cytosol, the oxidized precursors are retained in the intermembrane space. Thus, oxidation driven by Mia40 and Erv1 determines vectorial transport of the precursors into the mitochondrial intermembrane space.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Precursores de Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Cisteína , Disulfuros/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Mutación/genética , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo
14.
J Cell Biol ; 177(1): 163-72, 2007 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-17420295

RESUMEN

After skin wounding, the repair process is initiated by the release of growth factors, cytokines, and bioactive lipids from injured vessels and coagulated platelets. These signal molecules induce synthesis and deposition of a provisional extracellular matrix, as well as fibroblast invasion into and contraction of the wounded area. We previously showed that sphingosine-1-phosphate (S1P) triggers a signal transduction cascade mediating nuclear translocation of the LIM-only protein Fhl2 in response to activation of the RhoA GTPase (Muller, J.M., U. Isele, E. Metzger, A. Rempel, M. Moser, A. Pscherer, T. Breyer, C. Holubarsch, R. Buettner, and R. Schule. 2000. EMBO J. 19:359-369; Muller, J.M., E. Metzger, H. Greschik, A.K. Bosserhoff, L. Mercep, R. Buettner, and R. Schule. 2002. EMBO J. 21:736-748.). We demonstrate impaired cutaneous wound healing in Fhl2-deficient mice rescued by transgenic expression of Fhl2. Furthermore, collagen contraction and cell migration are severely impaired in Fhl2-deficient cells. Consequently, we show that the expression of alpha-smooth muscle actin, which is regulated by Fhl2, is reduced and delayed in wounds of Fhl2-deficient mice and that the expression of p130Cas, which is essential for cell migration, is reduced in Fhl2-deficient cells. In summary, our data demonstrate a function of Fhl2 as a lipid-triggered signaling molecule in mesenchymal cells regulating their migration and contraction during cutaneous wound healing.


Asunto(s)
Proteínas de Homeodominio/fisiología , Proteínas Musculares/fisiología , Fenómenos Fisiológicos de la Piel , Factores de Transcripción/fisiología , Cicatrización de Heridas/fisiología , Actinas/metabolismo , Animales , Movimiento Celular , Colágeno/metabolismo , Proteína Sustrato Asociada a CrK/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas con Homeodominio LIM , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Cicatrización de Heridas/genética
15.
Nat Cell Biol ; 9(3): 347-53, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17277772

RESUMEN

Posttranslational modifications of histones, such as methylation, regulate chromatin structure and gene expression. Recently, lysine-specific demethylase 1 (LSD1), the first histone demethylase, was identified. LSD1 interacts with the androgen receptor and promotes androgen-dependent transcription of target genes by ligand-induced demethylation of mono- and dimethylated histone H3 at Lys 9 (H3K9) only. Here, we identify the Jumonji C (JMJC) domain-containing protein JMJD2C as the first histone tridemethylase regulating androgen receptor function. JMJD2C interacts with androgen receptor in vitro and in vivo. Assembly of ligand-bound androgen receptor and JMJD2C on androgen receptor-target genes results in demethylation of trimethyl H3K9 and in stimulation of androgen receptor-dependent transcription. Conversely, knockdown of JMJD2C inhibits androgen-induced removal of trimethyl H3K9, transcriptional activation and tumour cell proliferation. Importantly, JMJD2C colocalizes with androgen receptor and LSD1 in normal prostate and in prostate carcinomas. JMJD2C and LSD1 interact and both demethylases cooperatively stimulate androgen receptor-dependent gene transcription. In addition, androgen receptor, JMJD2C and LSD1 assemble on chromatin to remove methyl groups from mono, di and trimethylated H3K9. Thus, our data suggest that specific gene regulation requires the assembly and coordinate action of demethylases with distinct substrate specificities.


Asunto(s)
Proteínas de Neoplasias/metabolismo , Oxidorreductasas N-Desmetilantes/metabolismo , Receptores Androgénicos/metabolismo , Factores de Transcripción/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Chlorocebus aethiops , Regulación de la Expresión Génica/efectos de los fármacos , Células HeLa , Histona Demetilasas , Histonas/metabolismo , Humanos , Histona Demetilasas con Dominio de Jumonji , Masculino , Metribolona/farmacología , MicroARNs/genética , Proteínas de Neoplasias/genética , Oxidorreductasas N-Desmetilantes/genética , Antígeno Prostático Específico/genética , Antígeno Prostático Específico/metabolismo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Unión Proteica/efectos de los fármacos , ARN Interferente Pequeño/genética , Receptores Androgénicos/análisis , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Elementos de Respuesta/genética , Calicreínas de Tejido/genética , Factores de Transcripción/genética , Transfección
16.
J Soc Gynecol Investig ; 13(1): 69-75, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16378916

RESUMEN

OBJECTIVE: Although the Four and a Half LIM domain protein 2 (FHL2) has been suggested to play an important role in tumor development, this has not been investigated in breast cancer. METHODS: Paraffin-embedded tissues from patients (n = 85) with primary breast cancer were submitted to immunohistochemical investigation of FHL2 expression and subsequent correlation with clinicopathologic parameters and patient survival. RESULTS: The expression of FHL2 was confined to the cytoplasm of the tumor cells. Forty (47%) of 85 samples showed weak expression of FHL2, whereas high expression was found in 45 tumors (53%). A statistically significant positive correlation was observed between FHL2 and androgen receptor expression (P = .029). Patients with tumors expressing low amounts of FHL2 were characterized by a significantly better survival compared to those with high intratumoral FHL2 expression (P = .0215, log-rank test). The additional stratification according to adjuvant tamoxifen treatment revealed a significantly improved survival rate for patients receiving tamoxifen and being diagnosed with a tumor expressing high amounts of FHL2. This might indicate that tamoxifen is at least partially capable of reversing the negative prognostic impact of high FHL2 expression. Multivariate Cox regression analysis revealed FHL2 expression as a significant independent predictor of survival. CONCLUSION: The specific expression in tumor tissue points to an important functional role of FHL2 in human breast cancer. Our survival data indicate that the expression of FHL2 in primary breast cancer is a potentially relevant prognostic factor. Further studies are warranted to elucidate whether analysis of FHL2 expression is suitable to predict response to antihormonal treatment with tamoxifen.


Asunto(s)
Neoplasias de la Mama/química , Neoplasias de la Mama/patología , Proteínas de Homeodominio/metabolismo , Proteínas Musculares/metabolismo , Factores de Transcripción/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Antineoplásicos Hormonales/farmacología , Femenino , Perfilación de la Expresión Génica , Proteínas de Homeodominio/análisis , Humanos , Inmunohistoquímica , Proteínas con Homeodominio LIM , Persona de Mediana Edad , Proteínas Musculares/análisis , Valor Predictivo de las Pruebas , Pronóstico , Receptores Androgénicos/metabolismo , Sobrevida , Tamoxifeno/farmacología , Factores de Transcripción/análisis
17.
Genes Dev ; 19(23): 2912-24, 2005 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-16322561

RESUMEN

Most transcriptional repression pathways depend on the targeted deacetylation of histone tails. In this report, we characterize NIR, a novel transcriptional corepressor with inhibitor of histone acetyltransferase (INHAT) activity. NIR (Novel INHAT Repressor) is ubiquitously expressed throughout embryonic development and adulthood. NIR is a potent transcriptional corepressor that is not blocked by histone deacetylase inhibitors and is capable of silencing both basal and activator-driven transcription. NIR directly binds to nucleosomes and core histones and prevents acetylation by histone acetyltransferases, thus acting as a bona fide INHAT. Using a tandem affinity purification approach, we identified the tumor suppressor p53 as a NIR-interacting partner. Association of p53 and NIR was verified in vitro and in vivo. Upon recruitment by p53, NIR represses transcription of both p53-dependent reporters and endogenous target genes. Knock-down of NIR by RNA interference significantly enhances histone acetylation at p53-regulated promoters. Moreover, p53-dependent apoptosis is robustly increased upon depletion of NIR. In summary, our findings describe NIR as a novel INHAT that plays an important role in the control of p53 function.


Asunto(s)
Histona Acetiltransferasas/antagonistas & inhibidores , Proteínas Represoras/fisiología , Transcripción Genética , Proteína p53 Supresora de Tumor/genética , Animales , Apoptosis , Regulación de la Expresión Génica , Humanos , Ratones , Ratones Noqueados , Regiones Promotoras Genéticas , Mapeo de Interacción de Proteínas , Interferencia de ARN , Proteínas Represoras/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
18.
J Clin Invest ; 115(10): 2742-51, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16184196

RESUMEN

TNF receptor-associated factor 6 (TRAF6) associates with the cytoplasmic domain of receptor activator of NF-kappaB (RANK). This event is central to normal osteoclastogenesis. We discovered that TRAF6 also interacts with FHL2 (four and a half LIM domain 2), a LIM domain--only protein that functions as a transcriptional coactivator or corepressor in a cell-type--specific manner. FHL2 mRNA and protein are undetectable in marrow macrophages and increase pari passu with osteoclast differentiation in vitro. FHL2 inhibits TRAF6-induced NF-kappaB activity in wild-type osteoclast precursors and, in keeping with its role as a suppressor of TRAF6-mediated RANK signaling, TRAF6/RANK association is enhanced in FHL2-/- osteoclasts. FHL2 overexpression delays RANK ligand-induced (RANKL-induced) osteoclast formation and cytoskeletal organization. Interestingly, osteoclast-residing FHL2 is not detectable in naive wild-type mice, in vivo, but is abundant in those treated with RANKL and following induction of inflammatory arthritis. Reflecting increased RANKL sensitivity, osteoclasts generated from FHL2-/- mice reach maturation and optimally organize their cytoskeleton earlier than their wild-type counterparts. As a consequence, FHL2-/- osteoclasts are hyperresorptive, and mice lacking the protein undergo enhanced RANKL and inflammatory arthritis-stimulated bone loss. FHL2 is, therefore, an antiosteoclastogenic molecule exerting its effect by attenuating TRAF6-mediated RANK signaling.


Asunto(s)
Diferenciación Celular/fisiología , Proteínas de Homeodominio/metabolismo , Proteínas Musculares/metabolismo , Osteoclastos/metabolismo , Transducción de Señal/fisiología , Factor 6 Asociado a Receptor de TNF/metabolismo , Factores de Transcripción/metabolismo , Animales , Artritis/genética , Artritis/metabolismo , Artritis/patología , Resorción Ósea/genética , Resorción Ósea/metabolismo , Resorción Ósea/patología , Proteínas Portadoras/metabolismo , Línea Celular , Citoesqueleto/genética , Citoesqueleto/metabolismo , Proteínas de Homeodominio/genética , Proteínas con Homeodominio LIM , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Noqueados , Proteínas Musculares/genética , Osteoclastos/citología , Ligando RANK , Receptor Activador del Factor Nuclear kappa-B , Factores de Transcripción/genética
19.
Nature ; 437(7057): 436-9, 2005 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-16079795

RESUMEN

Gene regulation in eukaryotes requires the coordinate interaction of chromatin-modulating proteins with specific transcription factors such as the androgen receptor. Gene activation and repression is specifically regulated by histone methylation status at distinct lysine residues. Here we show that lysine-specific demethylase 1 (LSD1; also known as BHC110) co-localizes with the androgen receptor in normal human prostate and prostate tumour. LSD1 interacts with androgen receptor in vitro and in vivo, and stimulates androgen-receptor-dependent transcription. Conversely, knockdown of LSD1 protein levels abrogates androgen-induced transcriptional activation and cell proliferation. Chromatin immunoprecipitation analyses demonstrate that androgen receptor and LSD1 form chromatin-associated complexes in a ligand-dependent manner. LSD1 relieves repressive histone marks by demethylation of histone H3 at lysine 9 (H3-K9), thereby leading to de-repression of androgen receptor target genes. Furthermore, we identify pargyline as an inhibitor of LSD1. Pargyline blocks demethylation of H3-K9 by LSD1 and consequently androgen-receptor-dependent transcription. Thus, modulation of LSD1 activity offers a new strategy to regulate androgen receptor functions. Here, we link demethylation of a repressive histone mark with androgen-receptor-dependent gene activation, thus providing a mechanism by which demethylases control specific gene expression.


Asunto(s)
Regulación de la Expresión Génica , Histonas/metabolismo , Oxidorreductasas N-Desmetilantes/metabolismo , Receptores Androgénicos/metabolismo , Transcripción Genética , Andrógenos , Animales , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cromatina/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Histona Demetilasas , Histonas/química , Humanos , Inmunoprecipitación , Masculino , Metilación/efectos de los fármacos , Ratones , Oxidorreductasas N-Desmetilantes/antagonistas & inhibidores , Oxidorreductasas N-Desmetilantes/genética , Pargilina/farmacología , Próstata/metabolismo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores Androgénicos/genética , Transcripción Genética/efectos de los fármacos , Activación Transcripcional
20.
EMBO J ; 24(17): 3049-56, 2005 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-16079911

RESUMEN

Osteoporosis is one of the major health problems today, yet little is known about the loss of bone mass caused by reduced activity of the bone-forming osteoblasts. Here we show that mice deficient for the transcriptional cofactor four and a half LIM domains 2 (Fhl2) exhibit a dramatic decrease of bone mass in both genders. Osteopenia is caused by a reduced bone formation rate that is solely due to the diminished activity of Fhl2-deficient osteoblasts, while their number remains unchanged. The number and activity of the bone-resorbing cells, the osteoclasts, is not altered. Enforced expression of Fhl2 in differentiated osteoblasts boosts mineralization in cell culture and, importantly, enhances bone formation in transgenic animals. Fhl2 increases the transcriptional activity of runt-related transcription factor 2 (Runx2), a key regulator of osteoblast function, and both proteins interact in vitro and in vivo. In summary, we present Fhl2-deficient mice as a unique model for osteopenia due to decreased osteoblast activity. Our data offer a novel concept to fight osteoporosis by modulating the anabolic activity of osteoblasts via Fhl2.


Asunto(s)
Enfermedades Óseas Metabólicas/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas Musculares/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Factores de Transcripción/metabolismo , Animales , Enfermedades Óseas Metabólicas/genética , Enfermedades Óseas Metabólicas/patología , Calcificación Fisiológica , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal , Proteínas de Unión al ADN/metabolismo , Femenino , Proteínas de Homeodominio/genética , Humanos , Proteínas con Homeodominio LIM , Masculino , Ratones , Ratones Transgénicos , Proteínas Musculares/deficiencia , Proteínas Musculares/genética , Osteogénesis , Unión Proteica , Factor de Transcripción AP-2 , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Activación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...