Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 9(1): 5136, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30914753

RESUMEN

Genome size is known to vary widely across plants. Yet, the evolutionary drivers and consequences of genome size variation across organisms are far from understood. We investigated genome size variation and evolution in two major subfamilies of the Neotropical family Bromeliaceae by determining new genome size values for 83 species, testing phylogenetic signal in genome size variation, and assessing the fit to different evolutionary models. For a subset of epiphytic bromeliad species, we also evaluated the relationship of genome size with thermal traits and relative growth rate (RGR), respectively. Genome size variation in Bromelioideae appears to be evolutionary conserved, while genome size among Tillandsioideae varies considerably, not just due to polyploidy but arguably also due to environmental factors. The subfamilies show fundamental differences in genome size and RGR: Bromelioideae have, on average, lower genome sizes than Tillandsioideae and at the same time exhibit higher RGR. We attribute this to different resource use strategies in the subfamilies. Analyses among subfamilies, however, revealed unexpected positive relationships between RGR and genome size, which might be explained by the nutrient regime during cultivation. Future research should test whether there is indeed a trade-off between genome size and growth efficiency as a function of nutrient supply.


Asunto(s)
Bromeliaceae/genética , Tamaño del Genoma , Genoma de Planta , Filogenia , Poliploidía
2.
New Phytol ; 217(1): 127-139, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28815610

RESUMEN

Epiphytic bromeliads represent a major component of Neotropical forests, but the potential effect of climate change on these plants is unclear. We investigated whether and how bromeliads are affected by the predicted 3°C temperature rise by the end of the century. We conducted growth experiments with 17 epiphytic bromeliad species at different temperatures to determine their fundamental thermal niches. By comparing those with niches for germination, we tested whether ontogenetic niche shift or niche contraction occurs in Bromeliaceae. Applying a classical growth analysis, we assessed the relative importance of the underlying growth components on interspecific variations in growth. Members of two bromeliad subfamilies differed in their response to elevated temperatures: Tillandsioideae may be negatively affected, whereas Bromelioideae moved closer to their thermal optimum. Across different ontogenetic stages, thermal niche characteristics revealed both niche shift and niche contraction. Interspecific variation in growth was driven almost exclusively by net assimilation rate at all temperatures. We conclude that the vulnerability of tropical plants to a future increase in temperature may be more variable than suggested by previous studies. We emphasize the importance of assessing niche breadth over multiple life stages and the need for better microclimatic data to link laboratory data with field conditions.


Asunto(s)
Bromeliaceae/fisiología , Bromeliaceae/crecimiento & desarrollo , Cambio Climático , Bosques , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...