Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 13(17): 20479-20488, 2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-33878265

RESUMEN

Impurity doping in silicon (Si) ultra-large-scale integration is one of the key challenges which prevent further device miniaturization. Using ultraviolet photoelectron spectroscopy and X-ray absorption spectroscopy in the total fluorescence yield mode, we show that the lowest unoccupied and highest occupied electronic states of ≤3 nm thick SiO2-coated Si nanowells shift by up to 0.2 eV below the conduction band and ca. 0.7 eV below the valence band edge of bulk silicon, respectively. This nanoscale electronic structure shift induced by anions at surfaces (NESSIAS) provides the means for low-nanoscale intrinsic Si (i-Si) to be flooded by electrons from an external (bigger, metallic) reservoir, thereby getting highly electron- (n-) conductive. While our findings deviate from the behavior commonly believed to govern the properties of silicon nanowells, they are further confirmed by the fundamental energy gap as per nanowell thickness when compared against published experimental data. Supporting our findings further with hybrid density functional theory calculations, we show that other group IV semiconductors (diamond, Ge) do respond to the NESSIAS effect in accord with Si. We predict adequate nanowire cross-sections (X-sections) from experimental nanowell data with a recently established crystallographic analysis, paving the way to undoped ultrasmall silicon electronic devices with significantly reduced gate lengths, using complementary metal-oxide-semiconductor-compatible materials.

2.
Beilstein J Nanotechnol ; 9: 2255-2264, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30202694

RESUMEN

Impurity doping of ultrasmall nanoscale (usn) silicon (Si) currently used in ultralarge scale integration (ULSI) faces serious miniaturization challenges below the 14 nm technology node such as dopant out-diffusion and inactivation by clustering in Si-based field-effect transistors (FETs). Moreover, self-purification and massively increased ionization energy cause doping to fail for Si nano-crystals (NCs) showing quantum confinement. To introduce electron- (n-) or hole- (p-) type conductivity, usn-Si may not require doping, but an energy shift of electronic states with respect to the vacuum energy between different regions of usn-Si. We show in theory and experiment that usn-Si can experience a considerable energy offset of electronic states by embedding it in silicon dioxide (SiO2) or silicon nitride (Si3N4), whereby a few monolayers (MLs) of SiO2 or Si3N4 are enough to achieve these offsets. Our findings present an alternative to conventional impurity doping for ULSI, provide new opportunities for ultralow power electronics and open a whole new vista on the introduction of p- and n-type conductivity into usn-Si.

3.
Angew Chem Int Ed Engl ; 56(34): 10204-10208, 2017 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-28194844

RESUMEN

A hexagonal phase in the ternary Ge-Se-Te system with an approximate composition of GeSe0.75 Te0.25 has been known since the 1960s but its structure has remained unknown. We have succeeded in growing single crystals by chemical transport as a prerequisite to solve and refine the Ge4 Se3 Te structure. It consists of layers that are held together by van der Waals type weak chalcogenide-chalcogenide interactions but also display unexpected Ge-Ge contacts, as confirmed by electron microscopy analysis. The nature of the electronic structure of Ge4 Se3 Te was characterized by chemical bonding analysis, in particular by the newly introduced density of energy (DOE) function. The Ge-Ge bonding interactions serve to hold electrons that would otherwise go into antibonding Ge-Te contacts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...