Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
3.
J Biol Chem ; 272(26): 16531-9, 1997 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-9195963

RESUMEN

Cap proximity is a requirement to enable secondary structures and RNA-binding proteins to repress translational initiation via the 5'-untranslated region (5'-UTR) of mammalian mRNAs. We show that in Saccharomyces cerevisiae, unlike mammalian cells, the in vitro translational repressive effect of the mammalian iron regulatory protein 1 (IRP1) is independent of the site of its target in the 5'-UTR, the iron-responsive element (IRE). In vitro studies demonstrate that the binding affinity of IRP1 is also unaffected by the position of the IRE. Using IRE loop mutants, we observe an almost complete loss of IRP1-dependent repression in yeast concomitant with a 150-fold reduction in binding affinity for the IRE target. This mirrors the natural quantitative range of iron-induced adjustment of IRE/IRP1 affinity in mammalian cells. By enhancing the stability of the IRE stem-loop, we also show that its intrinsic folding energy acts together with the binding energy of IRP1 to give an additive capacity to restrict translational initiation. An IRE.IRP1 complex in a cap-distal position in yeast blocks scanning 40 S ribosomes on the 5'-UTR. It follows that the position effect of mammalian site-specific translational repression is dictated by the competence of the mammalian preinitiation complex to destabilize inhibitory structures at different steps of the initiation process.


Asunto(s)
Biosíntesis de Proteínas , ARN Mensajero/química , Ribosomas/fisiología , Saccharomyces cerevisiae/genética , Termodinámica , Secuencia de Bases , Proteína 1 Reguladora de Hierro , Proteínas Reguladoras del Hierro , Proteínas Hierro-Azufre/metabolismo , Datos de Secuencia Molecular , Proteínas de Unión al ARN/metabolismo
4.
J Biol Chem ; 271(12): 7030-7, 1996 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-8636134

RESUMEN

Recognition of the 5'-end of eukaryotic mRNA by the ribosomal 43 S preinitiation complex involves the eukaryotic translation initiation factor eIF-4E (eIF-4alpha). Deletion mutants of the eIF-4E gene of Saccharomyces cerevisiae (CDC33) encoded proteins with reduced affinity for the 5'-cap. One of these mutant proteins lacked any detectable binding to a cap analogue binding column, yet was still able to support cell growth. More than 17% of the total eIF-4E amino acid sequence could be removed without fully inactivating this factor. At least 30 of the N-terminal amino acids are not essential for function. The minimal functional eIF-4E protein segment therefore comprises at most 176 amino acids. The translation and growth defects of the deletion mutants could be at least partially compensated by increases in eIF-4E synthesis, possibly due to a mass-action effect on mRNA binding. Electroporation of yeast spheroplasts with in vitro synthesized mRNA allowed us to characterize the ability of eIF-4E mutant strains to distinguish between capped and uncapped mRNAs in vivo. Our data show that the cap specificity of eIF-4E determines to what extent the translational apparatus differentiates between capped and uncapped mRNAs and indicate the minimum relative mRNA (cap) binding activity of eIF-4E required for yeast cell viability.


Asunto(s)
Factores de Iniciación de Péptidos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Clonación Molecular , Factor 4E Eucariótico de Iniciación , Datos de Secuencia Molecular , Mutación , Factores de Iniciación de Péptidos/genética , Biosíntesis de Proteínas , Saccharomyces cerevisiae/genética , Eliminación de Secuencia
5.
Curr Genet ; 24(6): 472-80, 1993 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-8299166

RESUMEN

Regulation of ADE2 gene expression was investigated in the yeast S. cerevisiae using translational fusions between this gene and the lacZ gene from E. coli. Expression was repressed in the presence of adenine and slightly increased under amino-acid starvation conditions. The promoters of the ADE2 gene, and of other genes involved in adenine biosynthesis, contain the hexanucleotide sequence TGACTC. A search for the hexanucleotide TGACTC in yeast promoter sequences revealed that many genes not related to amino-acid biosynthesis contain such sequences. We show here that these elements play a crucial role in ADE2 regulation since mutations in two such elements drastically reduced gene expression. Maximal expression required the transcriptional activators Bas1, Bas2 and Gcn4, whereas Yap1 had only minor effects.


Asunto(s)
Carboxiliasas/genética , Regulación Enzimológica de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Adenina/biosíntesis , Secuencia de Bases , Carboxiliasas/biosíntesis , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Secuencias Repetitivas de Ácidos Nucleicos , Homología de Secuencia de Ácido Nucleico
6.
EMBO J ; 12(10): 3997-4003, 1993 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-8404865

RESUMEN

The TIF3 gene of Saccharomyces cerevisiae was cloned and sequenced. The deduced amino acid sequence shows 26% identity with the sequence of mammalian translation initiation factor eIF-4B. The TIF3 gene is not essential for growth; however, its disruption results in a slow growth and cold-sensitive phenotype. In vitro translation of total yeast RNA in an extract from a TIF3 gene-disrupted strain is reduced compared with a wild-type extract. The translational defect is more pronounced at lower temperatures and can be corrected by the addition of wild-type extract or mammalian eIF-4B, but not by addition of mutant extract. In vivo translation of beta-galactosidase reporter mRNA with varying degree of RNA secondary structure in the 5' leader region in a TIF3 gene-disrupted strain shows preferential inhibition of translation of mRNA with more stable secondary structure. This indicates that Tif3 protein is an RNA helicase or contributes to RNA helicase activity in vivo.


Asunto(s)
Factores Eucarióticos de Iniciación , Proteínas Fúngicas/genética , Factores de Iniciación de Péptidos/genética , Biosíntesis de Proteínas , ARN Nucleotidiltransferasas/genética , ARN Nucleotidiltransferasas/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Secuencia de Bases , Northern Blotting , Southern Blotting , ADN de Hongos , Factor 3 de Iniciación Eucariótica , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Cinética , Datos de Secuencia Molecular , Factores de Iniciación de Péptidos/metabolismo , ARN Helicasas , Saccharomyces cerevisiae/enzimología , Homología de Secuencia de Aminoácido
7.
J Biol Chem ; 267(29): 21167-71, 1992 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-1400427

RESUMEN

Recognition of the cap structure at the 5' end of mRNA is one of the first events in initiation of eukaryotic translation. This step is mediated by the translation initiation factor 4F (eIF-4F). In mammalian cells this factor is composed of the cap-binding protein eIF-4E, eIF-4A, and a 220-kDa polypeptide. In yeast Saccharomyces cerevisiae, eIF-4E is found associated with a 150-kDa protein (p150) and a 20-kDa protein (p20). The resulting protein complex is proposed to represent yeast eIF-4F. To study the functions of p150 and p20 and their interaction with eIF-4E, we disrupted the genes encoding p150 and p20 and analyzed the effects on protein complex formation and cell viability. Yeast cells with single and double disruptions of the genes encoding p150 and p20 are viable, but p150 single and p150/p20 double disruptions show a slow growth phenotype. Gel chromatography and immunoadsorption experiments with a monoclonal anti-eIF-4E antibody coupled to protein G-Sepharose show that both p150 and p20 bind independently of each other to eIF-4E.


Asunto(s)
Factores de Iniciación de Péptidos/metabolismo , Saccharomyces cerevisiae/metabolismo , Anticuerpos Monoclonales , Southern Blotting , Western Blotting , Cromatografía de Afinidad , Cromatografía en Gel , ADN de Hongos/genética , ADN de Hongos/aislamiento & purificación , Electroforesis en Gel de Poliacrilamida , Factor 4F Eucariótico de Iniciación , Genes Fúngicos , Genotipo , Sustancias Macromoleculares , Factores de Iniciación de Péptidos/genética , Factores de Iniciación de Péptidos/aislamiento & purificación , Saccharomyces cerevisiae/genética
8.
Eur J Biochem ; 191(2): 257-61, 1990 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-2200670

RESUMEN

In recent years the yeast Saccharomyces cerevisiae has become a model system for studies of eukaryotic translation and translation regulation. Analysis of mRNA structure, translation initiation factor sequences and the translation initiation pathway indicate, that translation in S. cerevisiae is very similar to translation in higher eukaryotes. The availability of powerful genetic techniques lead to the dissection in yeast of individual steps in the translation pathway, the detection of biochemical interactions between components involved in translation and the unravelling of complex regulation phenomena.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Biosíntesis de Proteínas , Saccharomyces cerevisiae/genética
10.
J Biol Chem ; 264(21): 12145-7, 1989 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-2663851

RESUMEN

The translation initiation factor 4E (eIF-4E) is involved in the recognition of the cap structure at the 5' end of eukaryotic mRNA and facilitates ribosome binding. Subsequently, additional initiation factors mediate ribosomal scanning of mRNA and initiator AUG recognition (Shatkin, A. J. (1985) Cell 40, 223-224; Rhoads, R. E. (1988) Trends Biochem. Sci. 13, 52-56; Edery, I., Pelletier, J., and Sonenberg, N. (1987) in Translational Regulation of Gene Expression (Ilan, J., ed) pp. 335-366, Plenum Publishing Corp., New York). We show here that initiation factor 4E is functionally conserved between the unicellular eukaryote Saccharomyces cerevisiae and mammals. Although the amino acid identity of the factors from both species is limited to only 33%, mouse eIF-4E can substitute for yeast eIF-4E in vivo without major effects on cell viability, growth, and mating. This finding provides a starting point for new experimental strategies to investigate the structure-function relationship of eukaryotic translation initiation factor eIF-4E.


Asunto(s)
Factores de Iniciación de Péptidos/genética , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Animales , Factor 4E Eucariótico de Iniciación , Genes , Genes Fúngicos , Ratones , Datos de Secuencia Molecular , Factores de Iniciación de Péptidos/aislamiento & purificación , Factores de Iniciación de Péptidos/metabolismo , Plásmidos , Ribosomas/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Homología de Secuencia de Ácido Nucleico
11.
J Mol Biol ; 175(4): 431-52, 1984 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-6330366

RESUMEN

The nuclear amber mutation, pet494-1, specifically blocks the accumulation of the product of the mitochondrial gene oxi2, cytochrome oxidase subunit III. The pet494-1 mutation does not prevent transcription of the mitochondrial gene since RNA--gel blot hybridizations showed that mutant cells contain normal amounts of an oxi2 transcript, indistinguishable in size from wild-type. A mitochondrial mutation that partially suppresses the nuclear mutation was isolated. The "mitochondrial revertant" behaved as though it contained two different mitochondrial DNAs: one rho+, the other rho-. The suppressor mutation is carried on the rho- mitochondrial DNA and is apparently the result of a gene fusion between oxi2 and another mitochondrial gene, oxi3. This gene rearrangement replaced the normal 5'-non-translated sequence of oxi2 with a portion of the open reading frame of the second intron of oxi3. Novel transcripts of the rearranged gene, containing oxi3 sequences upstream from oxi2 were detected in the mitochondrial revertant. The strain accumulated an electrophoretically variant form of cytochrome oxidase subunit III, probably translated from a new initiation codon. The data are consistent with models in which the PET494 protein acts within the mitochondria to specifically promote the translation of the oxi2 messenger RNA.


Asunto(s)
Complejo IV de Transporte de Electrones/genética , Genes Fúngicos , Mitocondrias , Mutación , Biosíntesis de Proteínas , Supresión Genética , ADN Mitocondrial/genética , Complejo IV de Transporte de Electrones/biosíntesis , Modelos Genéticos , Hibridación de Ácido Nucleico , ARN Mensajero/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Transcripción Genética
12.
Mol Gen Genet ; 195(1-2): 275-80, 1984.
Artículo en Inglés | MEDLINE | ID: mdl-6092852

RESUMEN

The activity of the nuclear gene PET494 is required to allow expression of the yeast mitochondrial gene oxi2. To aid the study of the mechanism of action of PET494 we have isolated this gene from yeast DNA. A clone bank of yeast DNA fragments in a yeast-E. coli shuttle vector was screened by transformation for a plasmid able to complement the pet494-1 amber mutation. A complementing plasmid was obtained that contained a unique 4.4 kb yeast sequence. This 4.4 kb sequence contains the PET494 gene. Integration of a plasmid containing it into chromosomal DNA by homologous recombination, and subsequent genetic analysis, demonstrated that the 4.4 kb fragment was tightly linked to the pet494-1 mutation. In addition, the corresponding 4.4 kb sequence isolated from a pet494-1 mutant failed to complement the mutation. A 2 kb fragment, subcloned from the original plasmid retained the ability to complement the mutation. The pet494-1 mutation maps to chromosome XIV between rna2 and lys9, approximately 2.4 cm from lys9.


Asunto(s)
Clonación Molecular , ADN Mitocondrial/genética , Genes Fúngicos , Saccharomyces cerevisiae/genética , Secuencia de Bases , Cruzamientos Genéticos , Enzimas de Restricción del ADN , Genotipo , Mutación , Plásmidos , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA