Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Metab ; 72: 101714, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36966947

RESUMEN

OBJECTIVE: Mice with global deletion of the transient receptor potential channel melastatin family member 8 (TRPM8) are obese, and treatment of diet-induced obese (DIO) mice with TRPM8 agonists decrease body weight. Whether TRPM8 signaling regulates energy metabolism via central or peripheral effects is unknow. Here we assessed the metabolic phenotype of mice with either Nestin Cre-mediated neuronal loss of TRPM8, or with deletion of TRPM8 in Advillin Cre positive sensory neurons of the peripheral nervous system (PNS). METHODS: Nestin Cre- and Advillin Cre-Trpm8 knock-out (KO) mice were metabolically phenotyped under chronic exposure to either chow or high-fat diet (HFD), followed by assessment of energy and glucose metabolism. RESULTS: At room temperature, chow-fed neuronal Trpm8 KO are obese and show decreased energy expenditure when acutely treated with the TRPM8 selective agonist icilin. But body weight of neuronal Trpm8 KO mice is indistinguishable from wildtype controls at thermoneutrality, or when mice are chronically exposed to HFD-feeding. In contrast to previous studies, we show that the TRPM8 agonist icilin has no direct effect on brown adipocytes, but that icilin stimulates energy expenditure, at least in part, via neuronal TRPM8 signaling. We further show that lack of TRPM8 in sensory neurons of the PNS does not lead to a metabolically relevant phenotype. CONCLUSIONS: Our data indicate that obesity in TRPM8-deficient mice is centrally mediated and likely originates from alterations in energy expenditure and/or thermal conductance, but does not depend on TRPM8 signaling in brown adipocytes or sensory neurons of the PVN.


Asunto(s)
Intolerancia a la Glucosa , Canales Catiónicos TRPM , Animales , Masculino , Ratones , Peso Corporal , Dieta Alta en Grasa/efectos adversos , Intolerancia a la Glucosa/metabolismo , Ratones Noqueados , Nestina/metabolismo , Obesidad/metabolismo , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo
2.
Mol Metab ; 30: 72-130, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31767182

RESUMEN

BACKGROUND: The glucagon-like peptide-1 (GLP-1) is a multifaceted hormone with broad pharmacological potential. Among the numerous metabolic effects of GLP-1 are the glucose-dependent stimulation of insulin secretion, decrease of gastric emptying, inhibition of food intake, increase of natriuresis and diuresis, and modulation of rodent ß-cell proliferation. GLP-1 also has cardio- and neuroprotective effects, decreases inflammation and apoptosis, and has implications for learning and memory, reward behavior, and palatability. Biochemically modified for enhanced potency and sustained action, GLP-1 receptor agonists are successfully in clinical use for the treatment of type-2 diabetes, and several GLP-1-based pharmacotherapies are in clinical evaluation for the treatment of obesity. SCOPE OF REVIEW: In this review, we provide a detailed overview on the multifaceted nature of GLP-1 and its pharmacology and discuss its therapeutic implications on various diseases. MAJOR CONCLUSIONS: Since its discovery, GLP-1 has emerged as a pleiotropic hormone with a myriad of metabolic functions that go well beyond its classical identification as an incretin hormone. The numerous beneficial effects of GLP-1 render this hormone an interesting candidate for the development of pharmacotherapies to treat obesity, diabetes, and neurodegenerative disorders.


Asunto(s)
Péptido 1 Similar al Glucagón/metabolismo , Péptido 1 Similar al Glucagón/farmacología , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Polipéptido Inhibidor Gástrico/metabolismo , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Glucosa/metabolismo , Humanos , Hipoglucemiantes/uso terapéutico , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Obesidad/metabolismo , Receptores de Glucagón/metabolismo
3.
Internist (Berl) ; 60(9): 895-902, 2019 Sep.
Artículo en Alemán | MEDLINE | ID: mdl-31346639

RESUMEN

BACKGROUND: The worldwide rise in overweight and obesity is paralleled by an increasing prevalence of type-2 diabetes. Apart from bariatric surgery, treatment options to decrease body weight are often underwhelming. Innovative pharmacological options are required to cope with the global "diabesity" pandemic. OBJECTIVES: Particular novel pharmacological approaches are discussed, with a special focus on polyagonist-based pharmacotherapies. MATERIALS AND METHODS: Articles on co- and tri-agonists for the treatment of obesity and diabetes are presented and discussed. RESULTS: Unimolecular peptides have been developed for the treatment of obesity and type-2 diabetes. These peptides activate the receptors of multiple hormones and bundle their positive effects in one single molecule. In preclinical studies, polyagonists targeting the receptors for glucagon-like peptide-1 (GLP-1), glucagon, or glucose-dependent insulinotropic peptide (GIP) were promising to reduce body weight and blood glucose. GLP-1-mediated delivery of the nuclear hormones estrogen or dexamethasone also yielded beneficial effects in preclinical studies of obesity. CONCLUSIONS: Polyagonists represent an innovative strategy for the development of novel pharmacotherapies to treat obesity and diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Incretinas/uso terapéutico , Obesidad/tratamiento farmacológico , Polifarmacología , Polipéptido Inhibidor Gástrico , Péptido 1 Similar al Glucagón , Humanos , Insulina
4.
J Intern Med ; 284(6): 581-602, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30230640

RESUMEN

Obesity and its comorbidities, such as type 2 diabetes, are pressing worldwide health concerns. Available anti-obesity treatments include weight loss pharmacotherapies and bariatric surgery. Whilst surgical interventions typically result in significant and sustained weight loss, available pharmacotherapies are far less effective, typically decreasing body weight by no more than 5-10%. An emerging class of multi-agonist drugs may eventually bridge this gap. This new class of specially tailored drugs hybridizes the amino acid sequences of key metabolic hormones into one single entity with enhanced potency and sustained action. Successful examples of this strategy include multi-agonist drugs targeting the receptors for glucagon-like peptide-1 (GLP-1), glucagon and the glucose-dependent insulinotropic polypeptide (GIP). Due to the simultaneous activity at several metabolically relevant receptors, these multi-agonists offer improved body weight loss and glucose tolerance relative to their constituent monotherapies. Further advancing this concept, chimeras were generated that covalently link nuclear acting hormones such as oestrogen, thyroid hormone (T3 ) or dexamethasone to peptide hormones such as GLP-1 or glucagon. The benefit of this strategy is to restrict the nuclear hormone action exclusively to cells expressing the peptide hormone receptor, thereby maximizing combinatorial metabolic efficacy of both drug constituents in the target cells whilst preventing the nuclear hormone cargo from entering and acting on cells devoid of the peptide hormone receptor, in which the nuclear hormone might have unwanted effects. Many of these multi-agonists are in preclinical and clinical development and may represent new and effective tools in the fight against obesity and its comorbidities.


Asunto(s)
Hormonas Gastrointestinales/agonistas , Obesidad/tratamiento farmacológico , Péptidos/uso terapéutico , Animales , Hormonas Gastrointestinales/fisiología , Glucagón/agonistas , Glucagón/fisiología , Péptido 1 Similar al Glucagón/agonistas , Péptido 1 Similar al Glucagón/fisiología , Humanos , Obesidad/fisiopatología , Péptidos/farmacología
5.
Pharmacol Rev ; 70(4): 712-746, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30087160

RESUMEN

With their ever-growing prevalence, obesity and diabetes represent major health threats of our society. Based on estimations by the World Health Organization, approximately 300 million people will be obese in 2035. In 2015 alone there were more than 1.6 million fatalities attributable to hyperglycemia and diabetes. In addition, treatment of these diseases places an enormous burden on our health care system. As a result, the development of pharmacotherapies to tackle this life-threatening pandemic is of utmost importance. Since the beginning of the 19th century, a variety of drugs have been evaluated for their ability to decrease body weight and/or to improve deranged glycemic control. The list of evaluated drugs includes, among many others, sheep-derived thyroid extracts, mitochondrial uncouplers, amphetamines, serotonergics, lipase inhibitors, and a variety of hormones produced and secreted by the gastrointestinal tract or adipose tissue. Unfortunately, when used as a single hormone therapy, most of these drugs are underwhelming in their efficacy or safety, and placebo-subtracted weight loss attributed to such therapy is typically not more than 10%. In 2009, the generation of a single molecule with agonism at the receptors for glucagon and the glucagon-like peptide 1 broke new ground in obesity pharmacology. This molecule combined the beneficial anorectic and glycemic effects of glucagon-like peptide 1 with the thermogenic effect of glucagon into a single molecule with enhanced potency and sustained action. Several other unimolecular dual agonists have subsequently been developed, and, based on their preclinical success, these molecules illuminate the path to a new and more fruitful era in obesity pharmacology. In this review, we focus on the historical pharmacological approaches to treat obesity and glucose intolerance and describe how the knowledge obtained by these studies led to the discovery of unimolecular polypharmacology.


Asunto(s)
Obesidad/tratamiento farmacológico , Animales , Femenino , Humanos , Masculino , Pérdida de Peso
6.
J Endocrinol ; 238(2): R109-R119, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29848610

RESUMEN

Obesity is a worldwide pandemic, which can be fatal for the most extremely affected individuals. Lifestyle interventions such as diet and exercise are largely ineffective and current anti-obesity medications offer little in the way of significant or sustained weight loss. Bariatric surgery is effective, but largely restricted to only a small subset of extremely obese patients. While the hormonal factors mediating sustained weight loss and remission of diabetes by bariatric surgery remain elusive, a new class of polypharmacological drugs shows potential to shrink the gap in efficacy between a surgery and pharmacology. In essence, this new class of drugs combines the beneficial effects of several independent hormones into a single entity, thereby combining their metabolic efficacy to improve systems metabolism. Such unimolecular drugs include single molecules with agonism at the receptors for glucagon, glucagon-like peptide 1 and the glucose-dependent insulinotropic polypeptide. In preclinical studies, these specially tailored multiagonists outperform both their mono-agonist components and current best in class anti-obesity medications. While clinical trials and vigorous safety analyses are ongoing, these drugs are poised to have a transformative effect in anti-obesity therapy and might hopefully lead the way to a new era in weight-loss pharmacology.


Asunto(s)
Fármacos Antiobesidad/uso terapéutico , Obesidad/tratamiento farmacológico , Péptidos/uso terapéutico , Animales , Fármacos Antiobesidad/síntesis química , Fármacos Antiobesidad/clasificación , Cirugía Bariátrica , Descubrimiento de Drogas , Metabolismo Energético/efectos de los fármacos , Terapia por Ejercicio , Humanos , Estilo de Vida , Obesidad/metabolismo , Obesidad/terapia , Péptidos/química , Programas de Reducción de Peso/métodos
7.
Physiol Rev ; 97(2): 721-766, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28275047

RESUMEN

In the last two decades we have witnessed sizable progress in defining the role of gastrointestinal signals in the control of glucose and energy homeostasis. Specifically, the molecular basis of the huge metabolic benefits in bariatric surgery is emerging while novel incretin-based medicines based on endogenous hormones such as glucagon-like peptide 1 and pancreas-derived amylin are improving diabetes management. These and related developments have fostered the discovery of novel insights into endocrine control of systemic metabolism, and in particular a deeper understanding of the importance of communication across vital organs, and specifically the gut-brain-pancreas-liver network. Paradoxically, the pancreatic peptide glucagon has reemerged in this period among a plethora of newly identified metabolic macromolecules, and new data complement and challenge its historical position as a gut hormone involved in metabolic control. The synthesis of glucagon analogs that are biophysically stable and soluble in aqueous solutions has promoted biological study that has enriched our understanding of glucagon biology and ironically recruited glucagon agonism as a central element to lower body weight in the treatment of metabolic disease. This review summarizes the extensive historical record and the more recent provocative direction that integrates the prominent role of glucagon in glucose elevation with its under-acknowledged effects on lipids, body weight, and vascular health that have implications for the pathophysiology of metabolic diseases, and the emergence of precision medicines to treat metabolic diseases.


Asunto(s)
Encéfalo/metabolismo , Tracto Gastrointestinal/metabolismo , Glucagón/metabolismo , Hígado/metabolismo , Enfermedades Metabólicas/metabolismo , Páncreas/metabolismo , Animales , Encéfalo/efectos de los fármacos , Tracto Gastrointestinal/efectos de los fármacos , Glucagón/farmacología , Homeostasis/fisiología , Humanos , Hígado/efectos de los fármacos , Páncreas/efectos de los fármacos
9.
Mol Psychiatry ; 22(2): 192-201, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27184124

RESUMEN

The maintenance of normal body weight is disrupted in patients with anorexia nervosa (AN) for prolonged periods of time. Prior to the onset of AN, premorbid body mass index (BMI) spans the entire range from underweight to obese. After recovery, patients have reduced rates of overweight and obesity. As such, loci involved in body weight regulation may also be relevant for AN and vice versa. Our primary analysis comprised a cross-trait analysis of the 1000 single-nucleotide polymorphisms (SNPs) with the lowest P-values in a genome-wide association meta-analysis (GWAMA) of AN (GCAN) for evidence of association in the largest published GWAMA for BMI (GIANT). Subsequently we performed sex-stratified analyses for these 1000 SNPs. Functional ex vivo studies on four genes ensued. Lastly, a look-up of GWAMA-derived BMI-related loci was performed in the AN GWAMA. We detected significant associations (P-values <5 × 10-5, Bonferroni-corrected P<0.05) for nine SNP alleles at three independent loci. Interestingly, all AN susceptibility alleles were consistently associated with increased BMI. None of the genes (chr. 10: CTBP2, chr. 19: CCNE1, chr. 2: CARF and NBEAL1; the latter is a region with high linkage disequilibrium) nearest to these SNPs has previously been associated with AN or obesity. Sex-stratified analyses revealed that the strongest BMI signal originated predominantly from females (chr. 10 rs1561589; Poverall: 2.47 × 10-06/Pfemales: 3.45 × 10-07/Pmales: 0.043). Functional ex vivo studies in mice revealed reduced hypothalamic expression of Ctbp2 and Nbeal1 after fasting. Hypothalamic expression of Ctbp2 was increased in diet-induced obese (DIO) mice as compared with age-matched lean controls. We observed no evidence for associations for the look-up of BMI-related loci in the AN GWAMA. A cross-trait analysis of AN and BMI loci revealed variants at three chromosomal loci with potential joint impact. The chromosome 10 locus is particularly promising given that the association with obesity was primarily driven by females. In addition, the detected altered hypothalamic expression patterns of Ctbp2 and Nbeal1 as a result of fasting and DIO implicate these genes in weight regulation.


Asunto(s)
Anorexia Nerviosa/genética , Alelos , Índice de Masa Corporal , Peso Corporal/genética , Bases de Datos Genéticas , Femenino , Frecuencia de los Genes/genética , Sitios Genéticos , Predisposición Genética a la Enfermedad/genética , Variación Genética , Estudio de Asociación del Genoma Completo , Humanos , Desequilibrio de Ligamiento/genética , Masculino , Obesidad/genética , Polimorfismo de Nucleótido Simple/genética , Factores de Riesgo
10.
Neuroimage ; 142: 465-473, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27402596

RESUMEN

Ghrelin regulates energy homeostasis in various species and enhances memory in rodent models. In humans, the role of ghrelin in cognitive processes has yet to be characterized. Here we show in a double-blind randomized crossover design that acute administration of ghrelin alters encoding-related brain activity, however does not enhance memory formation in humans. Twenty-one healthy young male participants had to memorize food- and non-food-related words presented on a background of a virtual navigational route while undergoing fMRI recordings. After acute ghrelin administration, we observed decreased post-encoding resting state fMRI connectivity between the caudate nucleus and the insula, amygdala, and orbitofrontal cortex. In addition, brain activity related to subsequent memory performance was modulated by ghrelin. On the next day, however, no differences were found in free word recall or cued location-word association recall between conditions; and ghrelin's effects on brain activity or functional connectivity were unrelated to memory performance. Further, ghrelin had no effect on a cognitive test battery comprising tests for working memory, fluid reasoning, creativity, mental speed, and attention. In conclusion, in contrast to studies with animal models, we did not find any evidence for the potential of ghrelin acting as a short-term cognitive enhancer in humans.


Asunto(s)
Encéfalo/efectos de los fármacos , Encéfalo/fisiología , Cognición/fisiología , Conectoma/métodos , Ghrelina/farmacología , Memoria a Largo Plazo/fisiología , Recuerdo Mental/fisiología , Adulto , Encéfalo/diagnóstico por imagen , Cognición/efectos de los fármacos , Estudios Cruzados , Método Doble Ciego , Ghrelina/administración & dosificación , Humanos , Imagen por Resonancia Magnética , Masculino , Memoria a Largo Plazo/efectos de los fármacos , Recuerdo Mental/efectos de los fármacos , Adulto Joven
11.
Mol Metab ; 4(6): 437-60, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26042199

RESUMEN

BACKGROUND: The gastrointestinal peptide hormone ghrelin was discovered in 1999 as the endogenous ligand of the growth hormone secretagogue receptor. Increasing evidence supports more complicated and nuanced roles for the hormone, which go beyond the regulation of systemic energy metabolism. SCOPE OF REVIEW: In this review, we discuss the diverse biological functions of ghrelin, the regulation of its secretion, and address questions that still remain 15 years after its discovery. MAJOR CONCLUSIONS: In recent years, ghrelin has been found to have a plethora of central and peripheral actions in distinct areas including learning and memory, gut motility and gastric acid secretion, sleep/wake rhythm, reward seeking behavior, taste sensation and glucose metabolism.

12.
Int J Obes (Lond) ; 39(5): 791-7, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25349057

RESUMEN

OBJECTIVES: Obesity-related cancers represent public health burdens of the first order. Nevertheless, suitable mouse models to unravel molecular mechanisms linking obesity to human cancer are still not available. One translational model is the immunocompromised Foxn1 (winged-helix/forkead transcription factor) nude mouse transplanted with human tumor xenografts. However, most xenograft studies are conducted in nude mice on an in-bred BALB/c background that entails protection from diet-induced obesity. To overcome such resistance to obesity and its sequelae, we here propose the dual strategy of utilizing Foxn1 nude mice on a C57BL/6 background and housing them at their thermoneutral zone. METHODS: C57BL/6 nude and corresponding wild-type mice, housed at 23 or 33 °C, were subjected to either low-fat diet or high-fat diet (HFD). Energy expenditure, locomotor activity, body core temperature, respiratory quotient as well as food and water intake were analyzed using indirect calorimetry. Immune function at different housing temperatures was assessed by using an in vivo cytokine capture assay. RESULTS: Our data clearly demonstrate that conventional housing protects C57BL/6 nude mice from HFD-induced obesity, potentially via increased energy expenditure. In contrast, HFD-fed C57BL/6 nude mice housed at thermoneutral conditions develop adiposity, increased hepatic triglyceride accumulation, adipose tissue inflammation and glucose intolerance. Moreover, increased circulating levels of lipopolysaccharide-driven cytokines suggest a greatly enhanced immune response in C57BL/6 nude mice housed at thermoneutrality. CONCLUSION: Our data reveals mild cold stress as a major modulator for energy and body weight homeostasis as well as immune function in C57BL/6 nude mice. Adjusting housing temperatures to the thermoneutral zone may ultimately be key to successfully study growth and progression of human tumors in a diet-induced obese environment.


Asunto(s)
Vivienda para Animales/normas , Inflamación/inmunología , Neoplasias/inmunología , Obesidad/metabolismo , Temperatura , Animales , Peso Corporal , Frío , Dieta Alta en Grasa , Metabolismo Energético , Huésped Inmunocomprometido , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Neoplasias/patología , Obesidad/etiología , Estrés Fisiológico , Trasplante Heterólogo/métodos
13.
J Endocrinol Invest ; 36(3): 180-4, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22526011

RESUMEN

BACKGROUND: Ghrelin is a gastrointestinal peptide that promotes a positive energy balance. The enzyme ghrelin O-acyltransferase (GOAT) esterifies an n-octanoic acid to the peptide, thereby enabling ghrelin to bind and activate the ghrelin receptor. Although ghrelin has previously been implicated in the control and maintenance of body core temperature (BCT), the role that this acylation may play in thermoregulation has not been examined. AIM: We aimed to investigate the endogenous role of ghrelin acylation in thermoregulation. METHODS: In this study, we exposed mice lacking the enzyme GOAT as well as wild-type (WT) control mice to cold temperatures under ad libitum and fasting conditions. Additionally, we investigated the role of GOAT in metabolic adaptation to cold temperatures by analyzing BCT and energy metabolism in mice with and without GOAT that were progressively exposed to low ambient temperatures (31-7 C). RESULTS: We find that regardless of nutritional status, mice lacking GOAT maintain a similar BCT as their WT counterparts during an 8 h cold exposure. Furthermore, mice lacking GOAT maintain a similar BCT and metabolic adaptation asWT controls during acclimatization to low ambient temperatures. CONCLUSIONS: We conclude that the absence of the enzyme GOAT does not play a significant role in maintenance of BCT or metabolic adaptation during exposure to low external temperatures.


Asunto(s)
Aciltransferasas/fisiología , Regulación de la Temperatura Corporal/genética , Aclimatación/genética , Aciltransferasas/genética , Animales , Frío , Ingestión de Alimentos/fisiología , Metabolismo Energético/genética , Ayuno/sangre , Ayuno/metabolismo , Ayuno/fisiología , Proteínas de la Membrana , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factores de Tiempo
14.
Diabetologia ; 54(4): 900-9, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21181395

RESUMEN

AIMS/HYPOTHESIS: Obesity and type 2 diabetes are among the most serious health pathologies worldwide. Stress has been proposed as a factor contributing to the development of these health risk factors; however, the underlying mechanisms that link stress to obesity and diabetes need to be further clarified. Here, we study in mice how chronic stress affects dietary consumption and how that relationship contributes to obesity and diabetes. METHODS: C57BL/6J mice were subjected to chronic variable stress (CVS) for 15 days and subsequently fed with a standard chow or high-fat diet. Food intake, body weight, respiratory quotient, energy expenditure and spontaneous physical activity were measured with a customised calorimetric system and body composition was measured with nuclear magnetic resonance. A glucose tolerance test was also applied and blood glucose levels were measured with a glucometer. Plasma levels of adiponectin and resistin were measured using Lincoplex kits. RESULTS: Mice under CVS and fed with a high-fat diet showed impaired glucose tolerance associated with low plasma adiponectin:resistin ratios. CONCLUSIONS/INTERPRETATION: This study demonstrates, in a novel mouse model, how post-traumatic stress disorder enhances vulnerability for impaired glucose metabolism in an energy-rich environment and proposes a potential adipokine-based mechanism.


Asunto(s)
Estrés Fisiológico/fisiología , Adiponectina/sangre , Animales , Composición Corporal/fisiología , Modelos Animales de Enfermedad , Metabolismo Energético/fisiología , Prueba de Tolerancia a la Glucosa , Masculino , Ratones , Ratones Endogámicos C57BL , Resistina/sangre , Estrés Fisiológico/genética
15.
Mol Psychiatry ; 12(1): 23-35, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17060920

RESUMEN

Leptin is a hormone with pleiotropic functions affecting several tissues. Because leptin has a crucial role in the adaptation of an organism to semi-starvation, anorexia nervosa (AN) serves as a model disorder to elucidate the functional implications of hypoleptinaemia; vice versa, several symptoms in patients with this eating disorder are related to the low leptin levels, which are characteristic of acute AN. Weight gain in AN patients can induce relative hyperleptinaemia in comparison to controls matched for body mass index; circulating leptin concentrations in AN patients thus transverse from subnormal to supranormal levels within a few weeks. We review findings on leptin secretion in AN and focus on implications, particularly for the hypothalamus-pituitary-gonadal axis, bone mineral density and physical hyperactivity. Undoubtedly, the elucidation of leptin's function as a trigger of diverse neuroendocrine adaptations to a restricted energy intake has substantially advanced our knowledge of the pathogenesis of distinct symptoms of AN, including amenorrhoea that represents one of the four diagnostic criteria. The fact that hypoleptinaemia can induce hyperactivity in a rat model for AN has led to a series of studies in AN patients, which support the notion that application of leptin to severely hyperactive patients might prove beneficial.


Asunto(s)
Anorexia Nerviosa/metabolismo , Anorexia Nerviosa/fisiopatología , Leptina/fisiología , Animales , Humanos , Inanición/metabolismo , Inanición/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...