Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Hum Brain Mapp ; 45(8): e26753, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38864353

RESUMEN

Predicting individual behavior from brain functional connectivity (FC) patterns can contribute to our understanding of human brain functioning. This may apply in particular if predictions are based on features derived from circumscribed, a priori defined functional networks, which improves interpretability. Furthermore, some evidence suggests that task-based FC data may yield more successful predictions of behavior than resting-state FC data. Here, we comprehensively examined to what extent the correspondence of functional network priors and task states with behavioral target domains influences the predictability of individual performance in cognitive, social, and affective tasks. To this end, we used data from the Human Connectome Project for large-scale out-of-sample predictions of individual abilities in working memory (WM), theory-of-mind cognition (SOCIAL), and emotion processing (EMO) from FC of corresponding and non-corresponding states (WM/SOCIAL/EMO/resting-state) and networks (WM/SOCIAL/EMO/whole-brain connectome). Using root mean squared error and coefficient of determination to evaluate model fit revealed that predictive performance was rather poor overall. Predictions from whole-brain FC were slightly better than those from FC in task-specific networks, and a slight benefit of predictions based on FC from task versus resting state was observed for performance in the WM domain. Beyond that, we did not find any significant effects of a correspondence of network, task state, and performance domains. Together, these results suggest that multivariate FC patterns during both task and resting states contain rather little information on individual performance levels, calling for a reconsideration of how the brain mediates individual differences in mental abilities.


Asunto(s)
Conectoma , Emociones , Individualidad , Imagen por Resonancia Magnética , Memoria a Corto Plazo , Red Nerviosa , Humanos , Adulto , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Masculino , Femenino , Memoria a Corto Plazo/fisiología , Emociones/fisiología , Teoría de la Mente/fisiología , Adulto Joven , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen
2.
Geburtshilfe Frauenheilkd ; 84(3): 246-255, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38455997

RESUMEN

Introduction: To compare three conservative treatment options, standard care, pelvic floor muscle training (PFMT), and vaginal pessaries, for postpartum urinary incontinence (UI) that are accessible to most patients and practitioners in a generalizable cohort. Materials and Methods: A multicenter, open-label, parallel group, pragmatic randomized controlled clinical trial comparing standard care, PFMT, and vaginal cube pessary for postpartum urinary incontinence was conducted in six outpatient clinics. Sample size was based on large treatment effects (Cramers' V > 0.35) with a power of 80% and an alpha of 0.05 for a 3 × 3 contingency table, 44 patients needed to be included in the trial. Outcomes were analyzed according to the intention-to-treat principle. Group comparisons were made using analysis of variance (ANOVA), Kruskal-Wallis, and chi-square test as appropriate. P < 0.05 was considered statistically significant. Results: Of the 516 women screened, 111 presented with postpartum UI. Of these, 52 were randomized to one of three treatment groups: standard care (n = 17), pelvic floor muscle training (n = 17), or vaginal cube pessary (n = 18). After 12 weeks of treatment, treatment success, as measured by patient satisfaction, was significantly higher in the vaginal pessary group (77.8%, n = 14/18), compared to the standard care group (41.2%, n = 7/17), and the PFMT (23.5%, n = 4/17; χ 2 2,n = 52  = 14.55; p = 0.006, Cramer-V = 0.374). No adverse events were reported. SUI and MUI accounted for 88.4% of postpartum UI. Conclusion: Vaginal pessaries were superior to standard care or PFMT to satisfyingly reduce postpartum UI symptoms. No complications were found.

3.
Neurosci Biobehav Rev ; 158: 105544, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38220034

RESUMEN

Response inhibition is classically investigated using the go/no-go (GNGT) and stop-signal task (SST), which conceptually measure different subprocesses of inhibition. Further, different task versions with varying levels of additional executive control demands exist, making it difficult to identify the core neural correlates of response inhibition independent of variations in task complexity. Using neuroimaging meta-analyses, we show that a divergent pattern of regions is consistently involved in the GNGT versus SST, arguing for different mechanisms involved when performing the two tasks. Further, for the GNGT a strong effect of task complexity was found, with regions of the multiple demand network (MDN) consistently involved particularly in the complex GNGT. In contrast, both standard and complex SST recruited the MDN to a similar degree. These results complement behavioral evidence suggesting that inhibitory control becomes automatic after some practice and is performed without input of higher control regions in the classic, standard GNGT, but continues to be implemented in a top-down controlled fashion in the SST.


Asunto(s)
Mapeo Encefálico , Imagen por Resonancia Magnética , Humanos , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos , Función Ejecutiva/fisiología , Inhibición Psicológica , Redes Neurales de la Computación , Tiempo de Reacción/fisiología
4.
J Clin Med ; 12(20)2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37892639

RESUMEN

The amygdala contains androgen receptors and is involved in various affective and social functions. An interaction between testosterone and the amygdala's functioning is likely. We investigated the amygdala's resting-state functional connectivity (rsFC) network in association with testosterone in 94 healthy young adult women and men (final data available for analysis from 42 women and 39 men). Across the whole sample, testosterone was positively associated with the rsFC between the right amygdala and the right middle occipital gyrus, and it further predicted lower agreeableness scores. Significant sex differences appeared for testosterone and the functional connectivity between the right amygdala and the right superior frontal gyrus (SFG), showing higher testosterone levels with lower connectivity in women. Sex further predicted the openness and agreeableness scores. Our results show that testosterone modulates the rsFC between brain areas involved in affective processing and executive functions. The data indicate that the cognitive control of the amygdala via the frontal cortex is dependent on the testosterone levels in a sex-specific manner. Testosterone seems to express sex-specific patterns (1) in networks processing affect and cognition, and (2) in the frontal down-regulation of the amygdala. The sex-specific coupling between the amygdala and the frontal cortex in interaction with the hormone levels may drive sex-specific differences in a variety of behavioral phenomena that are further associated with psychiatric illnesses that show sex-specific prevalence rates.

5.
bioRxiv ; 2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-37215048

RESUMEN

Predicting individual behavior from brain functional connectivity (FC) patterns can contribute to our understanding of human brain functioning. This may apply in particular if predictions are based on features derived from circumscribed, a priori defined functional networks, which improves interpretability. Furthermore, some evidence suggests that task-based FC data may yield more successful predictions of behavior than resting-state FC data. Here, we comprehensively examined to what extent the correspondence of functional network priors and task states with behavioral target domains influences the predictability of individual performance in cognitive, social, and affective tasks. To this end, we used data from the Human Connectome Project for large-scale out-of-sample predictions of individual abilities in working memory (WM), theory-of-mind cognition (SOCIAL), and emotion processing (EMO) from FC of corresponding and non-corresponding states (WM/SOCIAL/EMO/resting-state) and networks (WM/SOCIAL/EMO/whole-brain connectome). Using root mean squared error and coefficient of determination to evaluate model fit revealed that predictive performance was rather poor overall. Predictions from whole-brain FC were slightly better than those from FC in task-specific networks, and a slight benefit of predictions based on FC from task versus resting state was observed for performance in the WM domain. Beyond that, we did not find any significant effects of a correspondence of network, task state, and performance domains. Together, these results suggest that multivariate FC patterns during both task and resting states contain rather little information on individual performance levels, calling for a reconsideration of how the brain mediates individual differences in mental abilities.

6.
J Clin Med ; 12(7)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37048832

RESUMEN

Stress is an important factor in the development, triggering, and maintenance of psychotic symptoms. Still, little is known about the neural correlates of cognitively regulating stressful events in schizophrenia. The current study aimed at investigating the cognitive down-regulation of negative, stressful reactions during a neuroimaging psychosocial stress paradigm (non-regulated stress versus cognitively regulated stress). In a randomized, repeated-measures within-subject design, we assessed subjective reactions and neural activation in schizophrenia patients (SZP) and matched healthy controls in a neuroimaging psychosocial stress paradigm. In general, SZP exhibited an increased anticipation of stress compared to controls (p = 0.020). During non-regulated stress, SZP showed increased negative affect (p = 0.033) and stronger activation of the left parietal operculum/posterior insula (p < 0.001) and right inferior frontal gyrus/anterior insula (p = 0.005) than controls. Contrarily, stress regulation compared to non-regulated stress led to increased subjective reactions in controls (p = 0.003) but less deactivation in SZP in the ventral anterior cingulate cortex (p = 0.027). Our data demonstrate stronger reactions to and anticipation of stress in patients and difficulties with cognitive stress regulation in both groups. Considering the strong association between mental health and stress, the investigation of cognitive regulation in individuals vulnerable to stress, including SZP, has crucial implications for improving stress intervention trainings.

7.
J Clin Med ; 12(3)2023 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-36769521

RESUMEN

Females and males differ in stress reactivity, coping, and the prevalence rates of stress-related disorders. According to a neurocognitive framework of stress coping, the functional connectivity between the amygdala and frontal regions (including the dorsolateral prefrontal cortex (dlPFC), ventral anterior cingulate cortex (vACC), and medial prefrontal cortex (mPFC)) plays a key role in how people deal with stress. In the current study, we investigated the effects of sex and stressor type in a within-subject counterbalanced design on the resting-state functional connectivity (rsFC) of the amygdala and these frontal regions in 77 healthy participants (40 females). Both stressor types led to changes in subjective ratings, with decreasing positive affect and increasing negative affect and anger. Females showed higher amygdala-vACC and amygdala-mPFC rsFC for social exclusion than for achievement stress, and compared to males. Whereas a higher amygdala-vACC rsFC indicates the activation of emotion processing and coping, a higher amygdala-mPFC rsFC indicates feelings of reward and social gain, highlighting the positive effects of social affiliation. Thus, for females, feeling socially affiliated might be more fundamental than for males. Our data indicate interactions of sex and stressor in amygdala-frontal coupling, which translationally contributes to a better understanding of the sex differences in prevalence rates and stress coping.

8.
Br J Psychol ; 114 Suppl 1: 45-69, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36111613

RESUMEN

Two competing theories explain the other-'race' effect (ORE) either by greater perceptual expertise to same-'race' (SR) faces or by social categorization of other-'race' (OR) faces at the expense of individuation. To assess expertise and categorization contributions to the ORE, a promising-yet overlooked-approach is comparing activations for different other-'races'. We present a label-based systematic review of neuroimaging studies reporting increased activity in response to OR faces (African, Caucasian, or Asian) when compared with the SR of participants. Hypothetically, while common activations would reflect general aspects of OR perception, 'race'-preferential ones would represent effects of 'race'-specific visual appearance. We find that several studies report activation of occipito-temporal and midcingulate areas in response to faces across different other-'races', presumably due to high demand on the visual system and category processing. Another area reported in response to all OR faces, the caudate nucleus, suggests the involvement of socio-affective processes and behavioural regulation. Overall, our results support hybrid models-both expertise and social categorization contribute to the ORE, but they provide little evidence for reduced motivation to process OR faces. Additionally, we identify areas preferentially responding to specific OR faces, reflecting effects of visual appearance.


Asunto(s)
Reconocimiento Facial , Grupos Raciales , Humanos , Pueblo Asiatico , Cognición , Neuroimagen , Reconocimiento Visual de Modelos/fisiología , Blanco , Negro o Afroamericano , Conducta Social
9.
Neuroimage Clin ; 30: 102666, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34215141

RESUMEN

Formal thought disorder (FTD) is a core symptom cluster of schizophrenia, but its neurobiological substrates remain poorly understood. Here we collected resting-state fMRI data from 276 subjects at seven sites and employed machine-learning to investigate the neurobiological correlates of FTD along positive and negative symptom dimensions in schizophrenia. Three a priori, meta-analytically defined FTD-related brain regions were used as seeds to generate whole-brain resting-state functional connectivity (rsFC) maps, which were then compared between schizophrenia patients and controls. A repeated cross-validation procedure was realized within the patient group to identify clusters whose rsFC patterns to the seeds were repeatedly observed as significantly associated with specific FTD dimensions. These repeatedly identified clusters (i.e., robust clusters) were functionally characterized and the rsFC patterns were used for predictive modeling to investigate predictive capacities for individual FTD dimensional-scores. Compared with controls, differential rsFC was found in patients in fronto-temporo-thalamic regions. Our cross-validation procedure revealed significant clusters only when assessing the seed-to-whole-brain rsFC patterns associated with positive-FTD. RsFC patterns of three fronto-temporal clusters, associated with higher-order cognitive processes (e.g., executive functions), specifically predicted individual positive-FTD scores (p = 0.005), but not other positive symptoms, and the PANSS general psychopathology subscale (p > 0.05). The prediction of positive-FTD was moreover generalized to an independent dataset (p = 0.013). Our study has identified neurobiological correlates of positive FTD in schizophrenia in a network associated with higher-order cognitive functions, suggesting a dysexecutive contribution to FTD in schizophrenia. We regard our findings as robust, as they allow a prediction of individual-level symptom severity.


Asunto(s)
Conectoma , Esquizofrenia , Encéfalo/diagnóstico por imagen , Cognición , Humanos , Imagen por Resonancia Magnética , Esquizofrenia/diagnóstico por imagen
10.
Biol Psychiatry ; 89(3): 308-319, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33357631

RESUMEN

BACKGROUND: Despite the marked interindividual variability in the clinical presentation of schizophrenia, the extent to which individual dimensions of psychopathology relate to the functional variability in brain networks among patients remains unclear. Here, we address this question using network-based predictive modeling of individual psychopathology along 4 data-driven symptom dimensions. Follow-up analyses assess the molecular underpinnings of predictive networks by relating them to neurotransmitter-receptor distribution patterns. METHODS: We investigated resting-state functional magnetic resonance imaging data from 147 patients with schizophrenia recruited at 7 sites. Individual expression along negative, positive, affective, and cognitive symptom dimensions was predicted using a relevance vector machine based on functional connectivity within 17 meta-analytic task networks following repeated 10-fold cross-validation and leave-one-site-out analyses. Results were validated in an independent sample. Networks robustly predicting individual symptom dimensions were spatially correlated with density maps of 9 receptors/transporters from prior molecular imaging in healthy populations. RESULTS: Tenfold and leave-one-site-out analyses revealed 5 predictive network-symptom associations. Connectivity within theory of mind, cognitive reappraisal, and mirror neuron networks predicted negative, positive, and affective symptom dimensions, respectively. Cognitive dimension was predicted by theory of mind and socioaffective default networks. Importantly, these predictions generalized to the independent sample. Intriguingly, these two networks were positively associated with D1 receptor and serotonin reuptake transporter densities as well as dopamine synthesis capacity. CONCLUSIONS: We revealed a robust association between intrinsic functional connectivity within networks for socioaffective processes and the cognitive dimension of psychopathology. By investigating the molecular architecture, this work links dopaminergic and serotonergic systems with the functional topography of brain networks underlying cognitive symptoms in schizophrenia.


Asunto(s)
Esquizofrenia , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Cognición , Humanos , Imagen por Resonancia Magnética , Red Nerviosa , Esquizofrenia/diagnóstico por imagen
11.
Cortex ; 129: 341-355, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32562973

RESUMEN

Empathy is a multidimensional construct including affective and cognitive components while maintaining the distinction between one-self and others. Our meta-analyses focused on shared and distinct networks underlying cognitive (taking somebody else's perspective in emotional/painful situations) and affective (self-referentially feeling somebody else's emotions/pain) empathy for various states including painful and emotional situations. Furthermore, a comparison with direct pain experience was carried out. For cognitive empathy, consistent activation in the anterior dorsal medial frontal gyrus (dmPFG) and the supramarginal gyrus (SMG) occurred. For affective empathy, convergent activation of the posterior dmPFG and the inferior frontal gyrus (IFG) was found. Consistent activation of the anterior insula (AI), the anterior dmPFG and the SMG was observed for empathy for pain, while convergent recruitment of the temporo-parietal junction, precuneus, posterior dmPFG, and the IFG was revealed in the meta-analysis across empathy for emotion experiments. The AI and the dmPFG/mid-cingulate cortex (MCC) showed overlapping as well as distinct neural activation for pain processing and empathy for pain. Taken together, we were able to show difference in the meta-analytic networks across cognitive and affective empathy as well as for pain and empathy processing. Based on the current results, distinct functions along the midline structures of the brain during empathy processing are apparent. Our data are lending further support for a multidimensional concept of empathy.


Asunto(s)
Mapeo Encefálico , Empatía , Encéfalo/diagnóstico por imagen , Emociones , Humanos , Imagen por Resonancia Magnética , Neuroimagen
12.
Am J Psychiatry ; 177(5): 422-434, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32098488

RESUMEN

OBJECTIVE: Imaging studies of major depressive disorder have reported structural and functional abnormalities in a variety of spatially diverse brain regions. Quantitative meta-analyses of this literature, however, have failed to find statistically significant between-study spatial convergence, other than transdiagnostic-only effects. In the present study, the authors applied a novel multimodal meta-analytic approach to test the hypothesis that major depression exhibits spatially convergent structural and functional brain abnormalities. METHODS: This coordinate-based meta-analysis included voxel-based morphometry (VBM) studies and resting-state voxel-based pathophysiology (VBP) studies of blood flow, glucose metabolism, regional homogeneity, and amplitude of low-frequency fluctuations (ALFF) and fractional ALFF (fALFF). Input data were grouped into three primary meta-analytic classes: gray matter atrophy, increased function, and decreased function in patients with major depression relative to healthy control subjects. In secondary meta-analyses, the data were grouped across primary categories, and in tertiary analyses, by medication status and absence of psychiatric comorbidity. Activation likelihood estimation was used for all analyses. RESULTS: A total of 92 publications reporting 152 experiments were identified, collectively representing 2,928 patients with major depressive disorder. The primary analyses detected no convergence across studies. The secondary analyses identified portions of the subgenual cingulate cortex, hippocampus, amygdala, and putamen as demonstrating convergent abnormalities. The tertiary analyses (clinical subtypes) showed improved convergence relative to the secondary analyses. CONCLUSIONS: Coordinate-based meta-analysis identified spatially convergent structural (VBM) and functional (VBP) abnormalities in major depression. The findings suggest replicable neuroimaging features associated with major depression, beyond the transdiagnostic effects reported in previous meta-analyses, and support a continued research focus on the subgenual cingulate and other selected regions' role in depression.


Asunto(s)
Encéfalo/fisiopatología , Trastorno Depresivo Mayor/fisiopatología , Encéfalo/patología , Trastorno Depresivo Mayor/patología , Neuroimagen Funcional , Humanos
14.
Front Psychiatry ; 9: 211, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29892234

RESUMEN

In schizophrenia (SCZ), dysfunction of the dorsolateral prefrontal cortex (DLPFC) has been linked to the deficits in executive functions and attention. It has been suggested that, instead of considering the right DLPFC as a cohesive functional entity, it can be divided into two parts (anterior and posterior) based on its whole-brain connectivity patterns. Given these two subregions' differential association with cognitive processes, we investigated the functional connectivity (FC) profile of both subregions through resting-state data to determine whether they are differentially affected in SCZ. Resting-state magnetic resonance imaging (MRI) scans were obtained from 120 patients and 172 healthy controls (HC) at 6 different MRI sites. The results showed differential FC patterns for the anterior and posterior parts of the right executive control-related DLPFC in SCZ with the parietal, the temporal and the cerebellar regions, along with a convergent reduction of connectivity with the striatum and the occipital cortex. An increased psychopathology level was linked to a higher difference in posterior vs. anterior FC for the left IFG/anterior insula, regions involved in higher-order cognitive processes. In sum, the current analysis demonstrated that even between two neighboring clusters connectivity could be differentially disrupted in SCZ. Lacking the necessary anatomical specificity, such notions may in fact be detrimental to a proper understanding of SCZ pathophysiology.

15.
Cortex ; 103: 240-255, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29665467

RESUMEN

Many neuroimaging studies have investigated the neural correlates of face processing. However, the location of face-preferential regions differs considerably between studies, possibly due to the use of different stimuli or tasks. By using Activation likelihood estimation meta-analyses, we aimed to a) delineate regions consistently involved in face processing and b) to assess the influence of stimuli and task on convergence of activation patterns. In total, we included 77 neuroimaging experiments in healthy subjects comparing face processing to a control condition. Results revealed a core face-processing network encompassing bilateral fusiform gyrus (FFG), inferior occipital (IOG) gyrus, superior temporal sulcus/middle temporal gyrus (STS/MTG), amygdala, inferior frontal junction (IFJ) and gyrus (IFG), left anterior insula as well as pre-supplementary motor area (pre-SMA). Furthermore, separate meta-analyses showed, that while significant convergence across all task and stimuli conditions was found in bilateral amygdala, right IOG, right mid-FFG, and right IFG, convergence in IFJ, STS/MTG, right posterior FFG, left FFG and pre-SMA differed between conditions. Thus, our results point to an occipito-frontal-amygdalae system that is involved regardless of stimulus and attention, whereas the remaining regions of the face-processing network are influenced by the task-dependent focus on specific facial characteristics as well as the type of stimuli processed.


Asunto(s)
Encéfalo/diagnóstico por imagen , Reconocimiento Facial/fisiología , Red Nerviosa/diagnóstico por imagen , Atención/fisiología , Mapeo Encefálico , Emociones/fisiología , Humanos , Imagen por Resonancia Magnética , Neuroimagen
16.
Brain Struct Funct ; 223(6): 2699-2719, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29572625

RESUMEN

Personality is associated with variation in all kinds of mental faculties, including affective, social, executive, and memory functioning. The intrinsic dynamics of neural networks underlying these mental functions are reflected in their functional connectivity at rest (RSFC). We, therefore, aimed to probe whether connectivity in functional networks allows predicting individual scores of the five-factor personality model and potential gender differences thereof. We assessed nine meta-analytically derived functional networks, representing social, affective, executive, and mnemonic systems. RSFC of all networks was computed in a sample of 210 males and 210 well-matched females and in a replication sample of 155 males and 155 females. Personality scores were predicted using relevance vector machine in both samples. Cross-validation prediction accuracy was defined as the correlation between true and predicted scores. RSFC within networks representing social, affective, mnemonic, and executive systems significantly predicted self-reported levels of Extraversion, Neuroticism, Agreeableness, and Openness. RSFC patterns of most networks, however, predicted personality traits only either in males or in females. Personality traits can be predicted by patterns of RSFC in specific functional brain networks, providing new insights into the neurobiology of personality. However, as most associations were gender-specific, RSFC-personality relations should not be considered independently of gender.


Asunto(s)
Encéfalo/fisiología , Red Nerviosa/fisiología , Personalidad/fisiología , Descanso , Adulto , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Conectoma , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Metaanálisis como Asunto , Red Nerviosa/diagnóstico por imagen , Oxígeno/sangre , Adulto Joven
17.
Neuroimage ; 170: 400-411, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28213119

RESUMEN

Despite the common conception of the dorsal premotor cortex (PMd) as a single brain region, its diverse connectivity profiles and behavioral heterogeneity argue for a differentiated organization of the PMd. A previous study revealed that the right PMd is characterized by a rostro-caudal and a ventro-dorsal distinction dividing it into five subregions: rostral, central, caudal, ventral and dorsal. The present study assessed whether a similar organization is present in the left hemisphere, by capitalizing on a multimodal data-driven approach combining connectivity-based parcellation (CBP) based on meta-analytic modeling, resting-state functional connectivity, and probabilistic diffusion tractography. The resulting PMd modules were then characterized based on multimodal functional connectivity and a quantitative analysis of associated behavioral functions. Analyzing the clusters consistent across all modalities revealed an organization of the left PMd that mirrored its right counterpart to a large degree. Again, caudal, central and rostral modules reflected a cognitive-motor gradient and a premotor eye-field was found in the ventral part of the left PMd. In addition, a distinct module linked to abstract cognitive functions was observed in the rostro-ventral left PMd across all CBP modalities, implying greater differentiation of higher cognitive functions for the left than the right PMd.


Asunto(s)
Mapeo Encefálico/métodos , Imagen de Difusión Tensora/métodos , Corteza Motora/diagnóstico por imagen , Corteza Motora/fisiología , Adulto , Humanos , Metaanálisis como Asunto , Modelos Teóricos
18.
Neurosci Biobehav Rev ; 84: 151-161, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29180258

RESUMEN

Neuroimaging has evolved into a widely used method to investigate the functional neuroanatomy, brain-behaviour relationships, and pathophysiology of brain disorders, yielding a literature of more than 30,000 papers. With such an explosion of data, it is increasingly difficult to sift through the literature and distinguish spurious from replicable findings. Furthermore, due to the large number of studies, it is challenging to keep track of the wealth of findings. A variety of meta-analytical methods (coordinate-based and image-based) have been developed to help summarise and integrate the vast amount of data arising from neuroimaging studies. However, the field lacks specific guidelines for the conduct of such meta-analyses. Based on our combined experience, we propose best-practice recommendations that researchers from multiple disciplines may find helpful. In addition, we provide specific guidelines and a checklist that will hopefully improve the transparency, traceability, replicability and reporting of meta-analytical results of neuroimaging data.


Asunto(s)
Guías como Asunto , Metaanálisis como Asunto , Neuroimagen/normas , Humanos
19.
Hum Brain Mapp ; 38(12): 5845-5858, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28876500

RESUMEN

Previous whole-brain functional connectivity studies achieved successful classifications of patients and healthy controls but only offered limited specificity as to affected brain systems. Here, we examined whether the connectivity patterns of functional systems affected in schizophrenia (SCZ), Parkinson's disease (PD), or normal aging equally translate into high classification accuracies for these conditions. We compared classification performance between pre-defined networks for each group and, for any given network, between groups. Separate support vector machine classifications of 86 SCZ patients, 80 PD patients, and 95 older adults relative to their matched healthy/young controls, respectively, were performed on functional connectivity in 12 task-based, meta-analytically defined networks using 25 replications of a nested 10-fold cross-validation scheme. Classification performance of the various networks clearly differed between conditions, as those networks that best classified one disease were usually non-informative for the other. For SCZ, but not PD, emotion-processing, empathy, and cognitive action control networks distinguished patients most accurately from controls. For PD, but not SCZ, networks subserving autobiographical or semantic memory, motor execution, and theory-of-mind cognition yielded the best classifications. In contrast, young-old classification was excellent based on all networks and outperformed both clinical classifications. Our pattern-classification approach captured associations between clinical and developmental conditions and functional network integrity with a higher level of specificity than did previous whole-brain analyses. Taken together, our results support resting-state connectivity as a marker of functional dysregulation in specific networks known to be affected by SCZ and PD, while suggesting that aging affects network integrity in a more global way. Hum Brain Mapp 38:5845-5858, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Envejecimiento/fisiología , Encéfalo/fisiopatología , Enfermedad de Parkinson/fisiopatología , Esquizofrenia/fisiopatología , Adulto , Anciano , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Humanos , Imagen por Resonancia Magnética , Procesos Mentales/fisiología , Metaanálisis como Asunto , Persona de Mediana Edad , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiopatología , Pruebas Neuropsicológicas , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/tratamiento farmacológico , Descanso , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/tratamiento farmacológico , Máquina de Vectores de Soporte , Adulto Joven
20.
Hum Brain Mapp ; 38(10): 4946-4965, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28653797

RESUMEN

Formal thought disorder (FTD) refers to a psychopathological dimension characterized by disorganized and incoherent speech. Whether symptoms of FTD arise from aberrant processing in language-related regions or more general cognitive networks, however, remains debated. Here, we addressed this question by a quantitative meta-analysis of published functional neuroimaging studies on FTD. The revised Activation Likelihood Estimation (ALE) algorithm was used to test for convergent aberrant activation changes in 18 studies (30 experiments) investigating FTD, of which 17 studies comprised schizophrenia patients and one study healthy subjects administered to S-ketamine. Additionally, we analyzed task-dependent and task-independent (resting-state) functional connectivity (FC) of brain regions showing convergence in activation changes. Subsequent functional characterization was performed for the initial clusters and the delineated connectivity networks by reference to the BrainMap database. Consistent activation changes were found in the left superior temporal gyrus (STG) and two regions within the left posterior middle temporal gyrus (p-MTG), ventrally (vp-MTG) and dorsally (dp-MTG). Functional characterization revealed a prominent functional association of ensuing clusters from our ALE meta-analysis with language and speech processing, as well as auditory perception in STG and with social cognition in dp-MTG. FC analysis identified task-dependent and task-independent networks for all three seed regions, which were mainly related to language and speech processing, but showed additional involvement in higher order cognitive functions. Our findings suggest that FTD is mainly characterized by abnormal activation in brain regions of the left hemisphere that are associated with language and speech processing, but also extend to higher order cognitive functions. Hum Brain Mapp 38:4946-4965, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Trastornos del Lenguaje/diagnóstico por imagen , Trastornos del Lenguaje/fisiopatología , Trastornos Mentales/diagnóstico por imagen , Trastornos Mentales/fisiopatología , Humanos , Funciones de Verosimilitud , Neuroimagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...