Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Sci Rep ; 10(1): 2798, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32071379

RESUMEN

Usutu virus (USUV) is a mosquito-borne flavivirus circulating in Western Europe that causes die-offs of mainly common blackbirds (Turdus merula). In the Netherlands, USUV was first detected in 2016, when it was identified as the likely cause of an outbreak in birds. In this study, dead blackbirds were collected, screened for the presence of USUV and submitted to Nanopore-based sequencing. Genomic sequences of 112 USUV were obtained and phylogenetic analysis showed that most viruses identified belonged to the USUV Africa 3 lineage, and molecular clock analysis evaluated their most recent common ancestor to 10 to 4 years before first detection of USUV in the Netherlands. USUV Europe 3 lineage, commonly found in Germany, was less frequently detected. This analyses further suggest some extent of circulation of USUV between the Netherlands, Germany and Belgium, as well as likely overwintering of USUV in the Netherlands.


Asunto(s)
Enfermedades de las Aves/virología , Brotes de Enfermedades/veterinaria , Infecciones por Flavivirus/veterinaria , Flavivirus/genética , Pájaros Cantores/virología , Animales , Enfermedades de las Aves/epidemiología , Flavivirus/aislamiento & purificación , Infecciones por Flavivirus/epidemiología , Infecciones por Flavivirus/virología , Países Bajos/epidemiología
3.
J Gen Physiol ; 150(5): 731-750, 2018 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-29626041

RESUMEN

Dehydroabietic acid (DHAA) is a naturally occurring component of pine resin that was recently shown to open voltage-gated potassium (KV) channels. The hydrophobic part of DHAA anchors the compound near the channel's positively charged voltage sensor in a pocket between the channel and the lipid membrane. The negatively charged carboxyl group exerts an electrostatic effect on the channel's voltage sensor, leading to the channel opening. In this study, we show that the channel-opening effect increases as the length of the carboxyl-group stalk is extended until a critical length of three atoms is reached. Longer stalks render the compounds noneffective. This critical distance is consistent with a simple electrostatic model in which the charge location depends on the stalk length. By combining an effective anchor with the optimal stalk length, we create a compound that opens the human KV7.2/7.3 (M type) potassium channel at a concentration of 1 µM. These results suggest that a stalk between the anchor and the effector group is a powerful way of increasing the potency of a channel-opening drug.


Asunto(s)
Abietanos/farmacología , Activación del Canal Iónico/efectos de los fármacos , Canales de Potasio KCNQ/química , Canales de Potasio de la Superfamilia Shaker/química , Secuencias de Aminoácidos , Animales , Sitios de Unión , Humanos , Canales de Potasio KCNQ/metabolismo , Unión Proteica , Canales de Potasio de la Superfamilia Shaker/metabolismo , Electricidad Estática , Xenopus
4.
Nano Lett ; 18(5): 3132-3137, 2018 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-29624405

RESUMEN

Tunable nanostructures that feature a high surface area are firmly attached to a conducting substrate and can be fabricated efficiently over significant areas, which are of interest for a wide variety of applications in, for instance, energy storage and catalysis. We present a novel approach to fabricate Fe nanoparticles using a pulsed-plasma process and their subsequent guidance and self-organization into well-defined nanostructures on a substrate of choice by the use of an external magnetic field. A systematic analysis and study of the growth procedure demonstrate that nondesired nanoparticle agglomeration in the plasma phase is hindered by electrostatic repulsion, that a polydisperse nanoparticle distribution is a consequence of the magnetic collection, and that the formation of highly networked nanotruss structures is a direct result of the polydisperse nanoparticle distribution. The nanoparticles in the nanotruss are strongly connected, and their outer surfaces are covered with a 2 nm layer of iron oxide. A 10 µm thick nanotruss structure was grown on a lightweight, flexible and conducting carbon-paper substrate, which enabled the efficient production of H2 gas from water splitting at a low overpotential of 210 mV and at a current density of 10 mA/cm2.


Asunto(s)
Compuestos Férricos/química , Hidrógeno/química , Hierro/química , Nanoestructuras/química , Nanotecnología/métodos , Agua/química , Catálisis , Diseño de Equipo , Campos Magnéticos , Magnetismo/instrumentación , Magnetismo/métodos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/ultraestructura , Nanoestructuras/ultraestructura , Nanotecnología/instrumentación , Gases em Plasma/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...