Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Fungi (Basel) ; 9(4)2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37108934

RESUMEN

The basidiomycete Ustilago maydis is a well-characterized model organism for studying pathogen-host interactions and of great interest for a broad spectrum of biotechnological applications. To facilitate research and enable applications, in this study, three luminescence-based and one enzymatic quantitative reporter were implemented and characterized. Several dual-reporter constructs were generated for ratiometric normalization that can be used as a fast-screening platform for reporter gene expression, applicable to in vitro and in vivo detection. Furthermore, synthetic bidirectional promoters that enable bicisitronic expression for gene expression studies and engineering strategies were constructed and implemented. These noninvasive, quantitative reporters and expression tools will significantly widen the application range of biotechnology in U. maydis and enable the in planta detection of fungal infection.

2.
PLoS Genet ; 18(6): e1010269, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35727840

RESUMEN

Spatiotemporal expression can be achieved by transport and translation of mRNAs at defined subcellular sites. An emerging mechanism mediating mRNA trafficking is microtubule-dependent co-transport on shuttling endosomes. Although progress has been made in identifying various components of the endosomal mRNA transport machinery, a mechanistic understanding of how these RNA-binding proteins are connected to endosomes is still lacking. Here, we demonstrate that a flexible MademoiseLLE (MLLE) domain platform within RNA-binding protein Rrm4 of Ustilago maydis is crucial for endosomal attachment. Our structure/function analysis uncovered three MLLE domains at the C-terminus of Rrm4 with a functionally defined hierarchy. MLLE3 recognises two PAM2-like sequences of the adaptor protein Upa1 and is essential for endosomal shuttling of Rrm4. MLLE1 and MLLE2 are most likely accessory domains exhibiting a variable binding mode for interaction with currently unknown partners. Thus, endosomal attachment of the mRNA transporter is orchestrated by a sophisticated MLLE domain binding platform.


Asunto(s)
Ustilago , Endosomas/genética , Endosomas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Oligopéptidos , ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Receptor Toll-Like 2/agonistas , Receptor Toll-Like 9/agonistas , Ustilago/genética
3.
EMBO Rep ; 22(10): e52445, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34402186

RESUMEN

In eukaryotic cells, proteins are targeted to their final subcellular locations with precise timing. A key underlying mechanism is the active transport of cognate mRNAs, which in many systems can be linked intimately to membrane trafficking. A prominent example is the long-distance endosomal transport of mRNAs and their local translation. Here, we describe current highlights of fundamental mechanisms of the underlying transport process as well as of biological functions ranging from endosperm development in plants to fungal pathogenicity and neuronal processes. Translation of endosome-associated mRNAs often occurs at the cytoplasmic surface of endosomes, a process that is needed for membrane-assisted formation of heteromeric protein complexes and for accurate subcellular targeting of proteins. Importantly, endosome-coupled translation of mRNAs encoding mitochondrial proteins, for example, seems to be particularly important for efficient organelle import and for regulating subcellular mitochondrial activity. In essence, these findings reveal a new mechanism of loading newly synthesised proteins onto endocytic membranes enabling intimate crosstalk between organelles. The novel link between endosomes and mitochondria adds an inspiring new level of complexity to trafficking and organelle biology.


Asunto(s)
Endosomas , Mitocondrias , Transporte Biológico , Endosomas/metabolismo , Células Eucariotas/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo
4.
J Fungi (Basel) ; 7(3)2021 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-33802393

RESUMEN

Heterologous protein production is a highly demanded biotechnological process. Secretion of the product to the culture broth is advantageous because it drastically reduces downstream processing costs. We exploit unconventional secretion for heterologous protein expression in the fungal model microorganism Ustilago maydis. Proteins of interest are fused to carrier chitinase Cts1 for export via the fragmentation zone of dividing yeast cells in a lock-type mechanism. The kinase Don3 is essential for functional assembly of the fragmentation zone and hence, for release of Cts1-fusion proteins. Here, we are first to develop regulatory systems for unconventional protein secretion using Don3 as a gatekeeper to control when export occurs. This enables uncoupling the accumulation of biomass and protein synthesis of a product of choice from its export. Regulation was successfully established at two different levels using transcriptional and post-translational induction strategies. As a proof-of-principle, we applied autoinduction based on transcriptional don3 regulation for the production and secretion of functional anti-Gfp nanobodies. The presented developments comprise tailored solutions for differentially prized products and thus constitute another important step towards a competitive protein production platform.

5.
Front Cell Dev Biol ; 9: 816335, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35083222

RESUMEN

Recombinant proteins are ubiquitously applied in fields like research, pharma, diagnostics or the chemical industry. To provide the full range of useful proteins, novel expression hosts need to be established for proteins that are not sufficiently produced by the standard platform organisms. Unconventional secretion in the fungal model Ustilago maydis is an attractive novel option for export of heterologous proteins without N-glycosylation using chitinase Cts1 as a carrier. Recently, a novel factor essential for unconventional Cts1 secretion termed Jps1 was identified. Here, we show that Jps1 is unconventionally secreted using a fusion to bacterial ß-glucuronidase as an established reporter. Interestingly, the experiment also demonstrates that the protein functions as an alternative carrier for heterologous proteins, showing about 2-fold higher reporter activity than the Cts1 fusion in the supernatant. In addition, Jps1-mediated secretion even allowed for efficient export of functional firefly luciferase as a novel secretion target which could not be achieved with Cts1. As an application for a relevant pharmaceutical target, export of functional bi-specific synthetic nanobodies directed against the SARS-CoV2 spike protein was demonstrated. The establishment of an alternative efficient carrier thus constitutes an excellent expansion of the existing secretion platform.

6.
PLoS Genet ; 16(9): e1008819, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32997654

RESUMEN

The striatin-interacting phosphatase and kinase (STRIPAK) multi-subunit signaling complex is highly conserved within eukaryotes. In fungi, STRIPAK controls multicellular development, morphogenesis, pathogenicity, and cell-cell recognition, while in humans, certain diseases are related to this signaling complex. To date, phosphorylation and dephosphorylation targets of STRIPAK are still widely unknown in microbial as well as animal systems. Here, we provide an extended global proteome and phosphoproteome study using the wild type as well as STRIPAK single and double deletion mutants (Δpro11, Δpro11Δpro22, Δpp2Ac1Δpro22) from the filamentous fungus Sordaria macrospora. Notably, in the deletion mutants, we identified the differential phosphorylation of 129 proteins, of which 70 phosphorylation sites were previously unknown. Included in the list of STRIPAK targets are eight proteins with RNA recognition motifs (RRMs) including GUL1. Knockout mutants and complemented transformants clearly show that GUL1 affects hyphal growth and sexual development. To assess the role of GUL1 phosphorylation on fungal development, we constructed phospho-mimetic and -deficient mutants of GUL1 residues. While S180 was dephosphorylated in a STRIPAK-dependent manner, S216, and S1343 served as non-regulated phosphorylation sites. While the S1343 mutants were indistinguishable from wild type, phospho-deficiency of S180 and S216 resulted in a drastic reduction in hyphal growth, and phospho-deficiency of S216 also affects sexual fertility. These results thus suggest that differential phosphorylation of GUL1 regulates developmental processes such as fruiting body maturation and hyphal morphogenesis. Moreover, genetic interaction studies provide strong evidence that GUL1 is not an integral subunit of STRIPAK. Finally, fluorescence microscopy revealed that GUL1 co-localizes with endosomal marker proteins and shuttles on endosomes. Here, we provide a new mechanistic model that explains how STRIPAK-dependent and -independent phosphorylation of GUL1 regulates sexual development and asexual growth.


Asunto(s)
Endosomas/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Unión al ARN/metabolismo , Sordariales/metabolismo , Núcleo Celular/metabolismo , Cuerpos Fructíferos de los Hongos/genética , Cuerpos Fructíferos de los Hongos/crecimiento & desarrollo , Cuerpos Fructíferos de los Hongos/metabolismo , Proteínas Fúngicas/genética , Hifa/genética , Hifa/metabolismo , Microscopía Fluorescente , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Mutación , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilación , Subunidades de Proteína , Proteómica/métodos , Proteínas de Unión al ARN/genética , Transducción de Señal , Sordariales/genética , Sordariales/crecimiento & desarrollo
7.
Front Microbiol ; 11: 1384, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32670239

RESUMEN

Eukaryotic microorganisms use monocistronic mRNAs to encode proteins. For synthetic biological approaches like metabolic engineering, precise co-expression of several proteins in space and time is advantageous. A straightforward approach is the application of viral 2A peptides to design synthetic polycistronic mRNAs in eukaryotes. During translation of these peptides the ribosome stalls, the peptide chain is released and the ribosome resumes translation. Thus, two independent polypeptide chains can be encoded from a single mRNA when a 2A peptide sequence is placed inbetween the two open reading frames. Here, we establish such a system in the well-studied model microorganism Ustilago maydis. Using two fluorescence reporter proteins, we compared the activity of five viral 2A peptides. Their activity was evaluated in vivo using fluorescence microscopy and validated using fluorescence resonance energy transfer (FRET). Activity ranged from 20 to 100% and the best performing 2A peptide was P2A from porcine teschovirus-1. As proof of principle, we followed regulated gene expression efficiently over time and synthesised a tri-cistronic mRNA encoding biosynthetic enzymes to produce mannosylerythritol lipids (MELs). In essence, we evaluated 2A peptides in vivo and demonstrated the applicability of 2A peptide technology for U. maydis in basic and applied science.

8.
EMBO Rep ; 20(9): e47381, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31338952

RESUMEN

mRNA transport determines spatiotemporal protein expression. Transport units are higher-order ribonucleoprotein complexes containing cargo mRNAs, RNA-binding proteins and accessory proteins. Endosomal mRNA transport in fungal hyphae belongs to the best-studied translocation mechanisms. Although several factors are known, additional core components are missing. Here, we describe the 232 kDa protein Upa2 containing multiple PAM2 motifs (poly[A]-binding protein [Pab1]-associated motif 2) as a novel core component. Loss of Upa2 disturbs transport of cargo mRNAs and associated Pab1. Upa2 is present on almost all transport endosomes in an mRNA-dependent manner. Surprisingly, all four PAM2 motifs are dispensable for function during unipolar hyphal growth. Instead, Upa2 harbours a novel N-terminal effector domain as important functional determinant as well as a C-terminal GWW motif for specific endosomal localisation. In essence, Upa2 meets all the criteria of a novel core component of endosomal mRNA transport and appears to carry out crucial scaffolding functions.


Asunto(s)
Endosomas/metabolismo , Proteínas Fúngicas/metabolismo , ARN Mensajero/metabolismo , Ustilago/metabolismo , Transporte Biológico/fisiología , Western Blotting , Biología Computacional , Proteínas Fúngicas/genética , Microscopía Fluorescente , Filogenia , Técnicas del Sistema de Dos Híbridos , Ustilago/genética
9.
Methods Mol Biol ; 1649: 319-335, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29130207

RESUMEN

An essential feature of protein expression is the tight regulation of when and where a protein is translated from its cognate mRNA. This spatiotemporal expression is particularly important in guaranteeing the correct and efficient targeting of proteins to defined subcellular sites. In order to achieve local translation, mRNAs must be deposited at specific locations. A common mechanism is the active transport of mRNAs along the actin or microtubule cytoskeleton. To study such dynamic transport processes in vivo RNA live imaging is the method of choice. This method is based on the principle that defined binding sites for a heterologous RNA-binding protein (RBP) are inserted in the 3' UTR of target mRNAs. Coexpression of the RBP fused to a fluorescent protein enables mRNA detection in vivo using fluorescence microscopy techniques. In this chapter we describe the well-established method of studying microtubule-dependent mRNA transport in the eukaryotic model microorganism Ustilago maydis. The presented experimental design and the microscopic techniques are applicable to a broad range of other organisms.


Asunto(s)
Imagenología Tridimensional/métodos , Modelos Biológicos , ARN de Hongos/metabolismo , Ustilago/metabolismo , Secuencia de Bases , Clonación Molecular , Endosomas/metabolismo , Proteínas Fúngicas/metabolismo , Genes Reporteros , Señales de Localización Nuclear , Transporte de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...