Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-1002775

RESUMEN

Purpose@#Indians have a higher incidence of cardiovascular diseases, often at a younger age, than other ethnic groups. This higher baseline risk requires consideration when assessing additional cardiac morbidity of breast cancer treatment. Superior cardiac sparing is a critical dosimetric advantage of proton therapy in breast cancer radiotherapy. We report here the heart and cardiac-substructure doses and early toxicities in breast cancer patients treated post-operatively with proton therapy in India’s first proton therapy center. @*Materials and Methods@#We treated twenty breast cancer patients with intensity-modulated proton therapy (IMPT) from October 2019 to September 2022, eleven after breast conservation, nine following mastectomy, and appropriate systemic therapy, when indicated. The most prescribed dose was 40 GyE to the whole breast/chest wall and 48 GyE by simultaneous integrated boost to the tumor bed and 37.5 GyE to appropriate nodal volumes, delivered in 15 fractions. @*Results@#Adequate coverage was achieved for clinical target volume (breast/chest wall), i.e., CTV40, and regional nodes, with 99% of the targets receiving 95% of the prescribed dose (V95% > 99%). The mean heart dose was 0.78 GyE and 0.87 GyE for all and left breast cancer patients, respectively. The mean left anterior descending artery (LAD) dose, LAD D0.02cc, and left ventricle dose were 2.76, 6.46, and 0.2 GyE, respectively. Mean ipsilateral lung dose, V20Gy, V5Gy, and contralateral breast dose (Dmean) were 6.87 GyE, 14.6%, 36.4%, and 0.38 GyE, respectively. @*Conclusion@#The dose to heart and cardiac substructures is lower with IMPT than published photon therapy data. Despite the limited access to proton therapy at present, given the higher cardiovascular risk and coronary artery disease prevalence in India, the cardiac sparing achieved using this technique merits consideration for wider adoption in breast cancer treatment.

2.
Br J Radiol ; 94(1119): 20201031, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33529057

RESUMEN

OBJECTIVE: To study dosimetric impact of random spot positioning errors on the clinical pencil beam scanning proton therapy plans. METHODS AND MATERIALS: IMPT plans of 10 patients who underwent proton therapy for tumors in brain or pelvic regions representing small and large volumes, respectively, were included in the study. Spot positioning errors of 1 mm, -1 mm or ±1 mm were introduced in these clinical plans by modifying the geometrical co-ordinates of proton spots using a script in the MATLAB programming environment. Positioning errors were simulated to certain numbers of (20%, 40%, 60%, 80%) randomly chosen spots in each layer of these treatment plans. Treatment plans with simulated errors were then imported back to the Raystation (Version 7) treatment planning system and the resultant dose distribution was calculated using Monte-Carlo dose calculation algorithm.Dosimetric plan evaluation parameters for target and critical organs of nominal treatment plans delivered for clinical treatments were compared with that of positioning error simulated treatment plans. For targets, D95% and D2% were used for the analysis. Dose received by optic nerve, chiasm, brainstem, rectum, sigmoid, and bowel were analyzed using relevant plan evaluation parameters depending on the critical structure. In case of intracranial lesions, the dose received by 0.03 cm3 volume (D0.03 cm3) was analyzed for optic nerve, chiasm and brainstem. In rectum, the volume of it receiving a dose of 65 Gy(RBE) (V65) and 40 Gy(RBE) (V40) were compared between the nominal and error introduced plans. Similarly, V65 and V63 were analyzed for Sigmoid and V50 and V15 were analyzed for bowel. RESULTS: The maximum dose variation in PTV D95% (1.88 %) was observed in a brain plan in which the target volume was the smallest (2.7 cm3) among all 10 plans included in the study. This variation in D95% drops down to 0.3% for a sacral chordoma plan in which the PTV volume is significantly higher at 672 cm3. The maximum difference in OARs in terms of absolute dose (D0.03 cm3) was found in left optic nerve (9.81%) and the minimum difference was observed in brainstem (2.48%). Overall, the magnitude of dose errors in chordoma plans were less significant in comparison to brain plans. CONCLUSION: The dosimetric impact of different error scenarios in spot positioning becomes more prominent for treatment plans involving smaller target volume compared to plans involving larger target volumes. ADVANCES IN KNOWLEDGE: Provides information on the dosimetric impact of various possible spot positioning errors and its dependence on the tumor volume in intensity modulated proton therapy.


Asunto(s)
Neoplasias Encefálicas/radioterapia , Neoplasias Pélvicas/radioterapia , Terapia de Protones/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Humanos , Método de Montecarlo , Dosificación Radioterapéutica , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA