Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(22): e202403539, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38556813

RESUMEN

The design and orderly layered co-immobilization of multiple enzymes on resin particles remain challenging. In this study, the SpyTag/SpyCatcher binding pair was fused to the N-terminus of an alcohol dehydrogenase (ADH) and an aldo-keto reductase (AKR), respectively. A non-canonical amino acid (ncAA), p-azido-L-phenylalanine (p-AzF), as the anchor for covalent bonding enzymes, was genetically inserted into preselected sites in the AKR and ADH. Employing the two bioorthogonal counterparts of SpyTag/SpyCatcher and azide-alkyne cycloaddition for the immobilization of AKR and ADH enabled sequential dual-enzyme coating on porous microspheres. The ordered dual-enzyme reactor was subsequently used to synthesize (S)-1-(2-chlorophenyl)ethanol asymmetrically from the corresponding prochiral ketone, enabling the in situ regeneration of NADPH. The reactor exhibited a high catalytic conversion of 74 % and good reproducibility, retaining 80 % of its initial activity after six cycles. The product had 99.9 % ee, which that was maintained in each cycle. Additionally, the double-layer immobilization method significantly increased the enzyme loading capacity, which was approximately 1.7 times greater than that of traditional single-layer immobilization. More importantly, it simultaneously enabled both the purification and immobilization of multiple enzymes on carriers, thus providing a convenient approach to facilitate cascade biocatalysis.


Asunto(s)
Alcohol Deshidrogenasa , Biocatálisis , Enzimas Inmovilizadas , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Alcohol Deshidrogenasa/metabolismo , Alcohol Deshidrogenasa/química , Alcohol Deshidrogenasa/genética , Ingeniería de Proteínas , Aldo-Ceto Reductasas/metabolismo , Aldo-Ceto Reductasas/química , Aldo-Ceto Reductasas/genética , Fenilalanina/química , Fenilalanina/metabolismo , Fenilalanina/análogos & derivados , Azidas/química
2.
Int J Biol Macromol ; 264(Pt 1): 130612, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38447845

RESUMEN

Effective photolytic regeneration of the NAD(P)H cofactor in enzymatic reductions is an important and elusive goal in biocatalysis. It can, in principle, be achieved using a near-infrared light (NIR) driven artificial photosynthesis system employing H2O as the sacrificial reductant. To this end we utilized TiO2/reduced graphene quantum dots (r-GQDs), combined with a novel rhodium electron mediator, to continuously supply NADPH in situ for aldo-keto reductase (AKR) mediated asymmetric reductions under NIR irradiation. This upconversion system, in which the Ti-O-C bonds formed between r-GQDs and TiO2 enabled efficient interfacial charge transfer, was able to regenerate NADPH efficiently in 64 % yield in 105 min. Based on this, the pharmaceutical intermediate (R)-1-(3,5-bis(trifluoromethyl)phenyl)ethan-1-ol was obtained, in 84 % yield and 99.98 % ee, by reduction of the corresponding ketone. The photo-enzymatic system is recyclable with a polymeric electron mediator, which maintained 66 % of its original catalytic efficiency and excellent enantioselectivity (99.9 % ee) after 6 cycles.


Asunto(s)
Rayos Infrarrojos , NAD , NADP , Aldo-Ceto Reductasas , NAD/metabolismo , Fotosíntesis
3.
Biomolecules ; 12(7)2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35883553

RESUMEN

Ideal immobilization with enhanced biocatalyst activity and thermostability enables natural enzymes to serve as a powerful tool to yield synthetically useful chemicals in industry. Such an enzymatic method strategy becomes easier and more convenient with the use of genetic and protein engineering. Here, we developed a covalent programmable polyproteam of tyrosine ammonia lyases (TAL-CLEs) by fusing SpyTag and SpyCatcher peptides into the N-terminal and C-terminal of the TAL, respectively. The resulting circular enzymes were clear after the spontaneous isopeptide bonds formed between the SpyTag and SpyCatcher. Furthermore, the catalytic performance of the TAL-CLEs was measured via a synthesis sample of p-Coumaric acid. Our TAL-CLEs showed excellent catalytic efficiency, with 98.31 ± 1.14% yield of the target product-which is 4.15 ± 0.08 times higher than that of traditional glutaraldehyde-mediated enzyme aggregates. They also showed over four times as much enzyme-activity as wild-type TAL does and demonstrated good reusability, and so may become a good candidate for industrial enzymes.


Asunto(s)
Amoníaco-Liasas , Amoníaco-Liasas/genética , Amoníaco-Liasas/metabolismo , Ácidos Cumáricos/metabolismo , Ingeniería de Proteínas , Tirosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...