Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
PLoS One ; 18(3): e0281888, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36867603

RESUMEN

Rapamycin treatment significantly increases lifespan and ameliorates several aging-related diseases in mice, making it a potential anti-aging drug. However, there are several obvious side effects of rapamycin, which may limit the broad applications of this drug. Lipid metabolism disorders such as fatty liver and hyperlipidemia are some of those unwanted side effects. Fatty liver is characterized as ectopic lipid accumulation in livers, which is usually accompanied by increased inflammation levels. Rapamycin is also a well-known anti-inflammation chemical. How rapamycin affects the inflammation level in rapamycin-induced fatty liver remains poorly understood. Here, we show that eight-day rapamycin treatment induced fatty liver and increased liver free fatty acid levels in mice, while the expression levels of inflammatory markers are even lower than those in the control mice. Mechanistically, the upstream of the pro-inflammatory pathway was activated in rapamycin-induced fatty livers, however, there is no increased NFκB nuclear translocation probably because the interaction between p65 and IκBα was enhanced by rapamycin treatment. The lipolysis pathway in the liver is also suppressed by rapamycin. Liver cirrhosis is an adverse consequence of fatty liver, while prolonged rapamycin treatment did not increase liver cirrhosis markers. Our results indicate that although fatty livers are induced by rapamycin, the fatty livers are not accompanied by increased inflammation levels, implying that rapamycin-induced fatty livers might not be as harmful as other types of fatty livers, such as high-fat diet and alcohol-induced fatty livers.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Hígado Graso , Animales , Ratones , Inhibidor NF-kappaB alfa , Inflamación , Cirrosis Hepática , Sirolimus
2.
Ann Hum Genet ; 87(1-2): 63-74, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36479902

RESUMEN

BACKGROUND: Primary osteoporosis is a systemic skeletal disease characterized by reduced bone mass and vulnerability to fractures. The genetics of osteoporosis in the Chinese population remain unclear, which hinders the prevention and treatment of osteoporosis in China. This study aimed to explore the susceptibility genes and the roles played by their variants in osteoporosis. METHODS: Blood samples were collected from 45 osteoporosis patients and 30 healthy individuals, and genome-wide association study was performed on array data. The expression levels of the candidate gene in different genotypes were further determined by using quantitative real-time PCR. Moreover, the differentiation capacity of bone marrow mesenchymal stem cells under different genotypes from osteoporosis patients was investigated. RESULTS: The most significant variant rs1891632 located in the upstream (918 bp) region of CRB2, which could down-regulate the expression levels of CRB2 in genotype-tissue expression database and played an essential role in the regulation of osteoblastic and osteoclastic differentiation during skeletal development. Another significant variant rs1061657 located within the 3'UTR region of TBX3 gene. We found that the mRNA levels of TBX3 decreased in the bMSCs of old osteoporosis patients. Interestingly, osteoblast differentiation capacity and TBX3 mRNA levels were similar between the young healthy individuals carrying derived and ancestral allele of rs1061657, whereas the differentiation capacity and TBX3 mRNA levels dramatically declined in elderly patients with osteoporosis. CONCLUSIONS: The variant rs1061657 might affect the osteogenesis of bMSCs in an age-dependent manner and that TBX3 may be a key susceptibility gene for primary osteoporosis. In conclusion, CRB2 and TBX3 may influence the development of osteoporosis; additionally, rs1891632 and rs1061657, as the key variants first reported to be associated with primary osteoporosis, may potentially contribute to predicting the risk of osteoporosis (especially for older individuals) and may serve as therapeutic targets.


Asunto(s)
Pueblos del Este de Asia , Osteoporosis , Anciano , Humanos , Pueblos del Este de Asia/genética , Estudio de Asociación del Genoma Completo , Osteogénesis/genética , Osteoporosis/etnología , Osteoporosis/genética , ARN Mensajero
3.
Transl Psychiatry ; 12(1): 361, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36056013

RESUMEN

The missense variant rs13107325 (C/T, p.Ala391Thr) in SLC39A8 consistently showed robust association with schizophrenia in recent genome-wide association studies (GWASs), suggesting the potential pathogenicity of this non-synonymous risk variant. Nevertheless, how this missense variant confers schizophrenia risk remains unknown. Here we constructed a knock-in mouse model (by introducing a threonine at the 393th amino acid of mouse SLC39A8 (SLC39A8-p.393T), which corresponds to rs13107325 (p.Ala391Thr) of human SLC39A8) to explore the potential roles and biological effects of this missense variant in schizophrenia pathogenesis. We assessed multiple phenotypes and traits (associated with rs13107325) of the knock-in mice, including body and brain weight, concentrations of metal ions (including cadmium, zinc, manganese, and iron) transported by SLC39A8, blood lipids, proliferation and migration of neural stem cells (NSCs), cortical development, behaviors and cognition, transcriptome, dendritic spine density, and synaptic transmission. Many of the tested phenotypes did not show differences in SLC39A8-p.393T knock-in and wild-type mice. However, we found that zinc concentration in brain and blood of SLC39A8-p.393T knock-in mice was dysregulated compared with wild-types, validating the functionality of rs13107325. Further analysis indicated that cortical dendritic spine density of the SLC39A8-p.393T knock-in mice was significantly decreased compared with wild-types, indicating the important role of SLC39A8-p.393T in dendritic spine morphogenesis. These results indicated that SLC39A8-p.393T knock-in resulted in decreased dendritic spine density, thus mimicking the dendritic spine pathology observed in schizophrenia. Our study indicates that rs13107325 might confer schizophrenia risk by regulating zinc concentration and dendritic spine density, a featured characteristic that was frequently reported to be decreased in schizophrenia.


Asunto(s)
Proteínas de Transporte de Catión , Esquizofrenia , Animales , Proteínas de Transporte de Catión/genética , Espinas Dendríticas/patología , Estudio de Asociación del Genoma Completo , Humanos , Ratones , Mutación Missense , Esquizofrenia/genética , Esquizofrenia/patología , Zinc
4.
Adv Sci (Weinh) ; 9(6): e2104786, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34978167

RESUMEN

Genome-wide association studies have identified 3p21.1 as a robust risk locus for schizophrenia. However, the underlying molecular mechanisms remain elusive. Here a functional regulatory variant (rs2535629) is identified that disrupts CTCF binding at 3p21.1. It is confirmed that rs2535629 is also significantly associated with schizophrenia in Chinese population and the regulatory effect of rs2535629 is validated. Expression quantitative trait loci analysis indicates that rs2535629 is associated with the expression of three distal genes (GLT8D1, SFMBT1, and NEK4) in the human brain, and CRISPR-Cas9-mediated genome editing confirmed the regulatory effect of rs2535629 on GLT8D1, SFMBT1, and NEK4. Interestingly, differential expression analysis of GLT8D1, SFMBT1, and NEK4 suggested that rs2535629 may confer schizophrenia risk by regulating SFMBT1 expression. It is further demonstrated that Sfmbt1 regulates neurodevelopment and dendritic spine density, two key pathological characteristics of schizophrenia. Transcriptome analysis also support the potential role of Sfmbt1 in schizophrenia pathogenesis. The study identifies rs2535629 as a plausibly causal regulatory variant at the 3p21.1 risk locus and demonstrates the regulatory mechanism and biological effect of this functional variant, indicating that this functional variant confers schizophrenia risk by altering CTCF binding and regulating expression of SFMBT1, a distal gene which plays important roles in neurodevelopment and synaptic morphogenesis.


Asunto(s)
alfa-Globulinas/genética , Factor de Unión a CCCTC/genética , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo/métodos , Proteínas Represoras/genética , Esquizofrenia/genética , Animales , Pueblo Asiatico , Modelos Animales de Enfermedad , Humanos , Ratones , Polimorfismo de Nucleótido Simple/genética
5.
Mol Psychiatry ; 26(11): 6896-6911, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33931730

RESUMEN

Genome-wide association studies (GWASs) have revealed that genetic variants at the 22q13.2 risk locus were robustly associated with schizophrenia. However, the causal variants at this risk locus and their roles in schizophrenia remain elusive. Here we identify the risk missense variant rs1801311 (located in the 1st exon of NDUFA6 gene) as likely causal for schizophrenia at 22q13.2 by disrupting binding of YY1, TAF1, and POLR2A. We systematically elucidated the regulatory mechanisms of rs1801311 and validated the regulatory effect of this missense variant. Intriguingly, rs1801311 physically interacted with NAGA (encodes the alpha-N-acetylgalactosaminidase, which is mainly involved in regulating metabolisms of glycoproteins and glycolipids in lysosome) and showed the most significant association with NAGA expression in the human brain, with the risk allele (G) associated with higher NAGA expression. Consistent with eQTL analysis, expression analysis showed that NAGA was significantly upregulated in brains of schizophrenia cases compared with controls, further supporting that rs1801311 may confer schizophrenia risk by regulating NAGA expression. Of note, we found that NAGA regulates important neurodevelopmental processes, including proliferation and differentiation of neural stem cells. Transcriptome analysis corroborated that NAGA regulates pathways associated with neuronal differentiation. Finally, we independently confirmed the association between rs1801311 and schizophrenia in a large Chinese cohort. Our study elucidates the regulatory mechanisms of the missense schizophrenia risk variant rs1801311 and provides mechanistic links between risk variant and schizophrenia etiology. In addition, this study also revealed the novel role of coding variants in gene regulation and schizophrenia risk, i.e., genetic variant in coding region of a specific gene may confer disease risk through regulating distal genes (act as regulatory variant for distal genes).


Asunto(s)
Esquizofrenia , Alelos , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Humanos , Mutación Missense/genética , Polimorfismo de Nucleótido Simple/genética , Esquizofrenia/genética , Factor de Transcripción YY1/genética , alfa-N-Acetilgalactosaminidasa/genética , alfa-N-Acetilgalactosaminidasa/metabolismo
6.
Psychiatry Res ; 294: 113491, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33070109

RESUMEN

Recent genome-wide association studies (GWAS) have identified multiple schizophrenia-associated risk loci. However, the potential functional (or causal) variant remains largely unknown for each of the identified risk locus. In this study, we utilized different functional annotation approaches (i.e., CADD, Eigen, GWAVA, RegulomeDB and LINSIGHT) to prioritize the most possible functional variant at schizophrenia risk locus 12q24.31, a risk locus that showed genome-wide significant association with schizophrenia. We found that four functional annotation methods prioritized rs7304782 as a potential functional variant at 12q24.31, suggesting the potential functional consequence of rs7304782. Consistent with the functional annotation, reporter gene assays showed that different allele of rs7304782 affected the luciferase activity significantly, further supporting that rs7304782 is a functional variant. We further performed genetic association study and validated that rs7304782 is also associated with schizophrenia in Chinese population (N=4,291 cases and 7,847 controls), with the same risk allele as in European population. Expression quantitative trait loci (eQTL) analysis indicated that rs7304782 was significantly associated with the expression of OGFOD2 in human brain tissues. Of note, differential expression analysis indicated that OGFOD2 was significantly down-regulated in schizophrenia cases compared with controls. Our study identified a potential functional variant (i.e., rs7304782) at schizophrenia risk locus 12q24.31 and suggested that this functional variant may confer schizophrenia risk through regulating OGFOD2 expression.


Asunto(s)
Pueblo Asiatico/genética , Estudios de Asociación Genética/métodos , Predisposición Genética a la Enfermedad/genética , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Esquizofrenia/genética , Adulto , Alelos , Línea Celular Tumoral , Femenino , Predisposición Genética a la Enfermedad/epidemiología , Células HEK293 , Humanos , Masculino , Vigilancia de la Población , Reproducibilidad de los Resultados , Esquizofrenia/diagnóstico , Esquizofrenia/epidemiología , Adulto Joven
7.
EBioMedicine ; 44: 530-541, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31133542

RESUMEN

BACKGROUND: Schizophrenia is a complex mental disorder resulting in poor life quality and high social and economic burden. Despite the fact that genome-wide association studies (GWASs) have successfully identified a number of risk loci for schizophrenia, identifying the causal genes at the risk loci and elucidating their roles in disease pathogenesis remain major challenges. METHODS: The summary data-based Mendelian randomization analysis (SMR) was used to integrate a large-scale GWAS of schizophrenia with brain expression quantitative trait loci (eQTL) data and brain methylation expression quantitative trait loci (meQTL) data, to identify novel risk gene(s) for schizophrenia. We then analyzed the mRNA expression and methylation statuses of the gene hit BTN3A2 during the early brain development. Electrophysiological analyses of CA1 pyramidal neurons were performed to evaluate the excitatory and inhibitory synaptic activity after overexpression of BTN3A2 in rat hippocampal slices. Cell surface binding assay was used to test the interaction of BTN3A2 and neurexins. FINDINGS: We identified BTN3A2 as a potential risk gene for schizophrenia. The mRNA expression and methylation data showed that BTN3A2 expression in human brain is highest post-natally. Further electrophysiological analyses of rat hippocampal slices showed that BTN3A2 overexpression specifically suppressed the excitatory synaptic activity onto CA1 pyramidal neurons, most likely through its interaction with the presynaptic adhesion molecule neurexins. INTERPRETATION: Increased expression of BTN3A2 might confer risk for schizophrenia by altering excitatory synaptic function. Our result constitutes a paradigm for distilling risk gene using an integrative analysis and functional characterization in the post-GWAS era. FUND: This study was supported by the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB02020003 to Y-GY), the National Natural Science Foundation of China (31730037 to Y-GY), and the Bureau of Frontier Sciences and Education, Chinese Academy of Sciences (QYZDJ-SSW-SMC005 to Y-GY).


Asunto(s)
Butirofilinas/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Complejo Mayor de Histocompatibilidad/genética , Sitios de Carácter Cuantitativo , Esquizofrenia/genética , Animales , Encéfalo/metabolismo , Encéfalo/fisiopatología , Complemento C4a/genética , Biología Computacional/métodos , Metilación de ADN , Bases de Datos Genéticas , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Estudio de Asociación del Genoma Completo , Hipocampo/metabolismo , Hipocampo/fisiopatología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Análisis de la Aleatorización Mendeliana , Primates , Ratas , Esquizofrenia/fisiopatología , Transmisión Sináptica/genética , Flujo de Trabajo
8.
Transl Psychiatry ; 8(1): 67, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29540662

RESUMEN

Genome-wide association studies (GWAS) have identified more than 100 loci that show robust association with schizophrenia risk. However, due to the complexity of linkage disequilibrium and gene regulatory, it is challenging to pinpoint the causal genes at the risk loci and translate the genetic findings from GWAS into disease mechanism and clinical treatment. Here we systematically predicted the plausible candidate causal genes for schizophrenia at genome-wide level. We utilized different approaches and strategies to predict causal genes for schizophrenia, including Sherlock, SMR, DAPPLE, Prix Fixe, NetWAS, and DEPICT. By integrating the results from different prediction approaches, we identified six top candidates that represent promising causal genes for schizophrenia, including CNTN4, GATAD2A, GPM6A, MMP16, PSMA4, and TCF4. Besides, we also identified 35 additional high-confidence causal genes for schizophrenia. The identified causal genes showed distinct spatio-temporal expression patterns in developing and adult human brain. Cell-type-specific expression analysis indicated that the expression level of the predicted causal genes was significantly higher in neurons compared with oligodendrocytes and microglia (P < 0.05). We found that synaptic transmission-related genes were significantly enriched among the identified causal genes (P < 0.05), providing further support for the dysregulation of synaptic transmission in schizophrenia. Finally, we showed that the top six causal genes are dysregulated in schizophrenia cases compared with controls and knockdown of these genes impaired the proliferation of neuronal cells. Our study depicts the landscape of plausible schizophrenia causal genes for the first time. Further genetic and functional validation of these genes will provide mechanistic insights into schizophrenia pathogenesis and may facilitate to provide potential targets for future therapeutics and diagnostics.


Asunto(s)
Esquizofrenia/genética , Esquizofrenia/metabolismo , Teorema de Bayes , Encéfalo/crecimiento & desarrollo , Línea Celular Tumoral , Proliferación Celular , Regulación del Desarrollo de la Expresión Génica , Ontología de Genes , Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo , Humanos , Polimorfismo de Nucleótido Simple , Transducción de Señal
9.
J Mater Chem B ; 2(29): 4631-4639, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32262275

RESUMEN

Highly nitrogen-doped carbon dots (N-CDs) are prepared by the pyrolysis of konjac flour under mild conditions followed with a simple extraction by ethanol and water. The N-CDs exhibit excellent pH-switched photoluminescence (PL), and their PL intensity can be facilitated by either mixing with NaOH and basic amino acids or by surface passivation with non-amine-terminated polyethylene glycols of different molecular weights. Further, the fluorescence of N-CDs can be quenched with Fe3+ and recovered with l-lysine, accompanied with a red-shift of emission wavelength. In addition, the low toxicity and strongly fluorescent N-CDs are applied for cell imaging, and the quenched fluorescence by Fe3+ can be recovered inside the living cells.

10.
Toxicol Rep ; 1: 114-121, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-28962232

RESUMEN

Nickel nanowires (Ni NWs) have great potential to be used as a living cell manipulation tool and developed into an anticancer agent. However, their candidacy as biomedical appliances need detailed human cell studies, such as study of the interaction between Ni NWs and tumor cells. The present study investigated the cytotoxicity of Ni NWs in HeLa cells. A dose-dependent inhibition of cell growth was observed by using the MTT assay. We demonstrated that Ni NWs induced oxidative stress by generation of reactive oxygen species (ROS). Apoptosis induction was evidenced by flow cytometry, annexin V binding assay and DAPI staining. DNA flow cytometric analysis indicated that Ni NWs significantly increased the percentages of cells in S phase compared with control cells. This process was accompanied by the loss of mitochondrial membrane potential. These results revealed that Ni NWs induced apoptosis in HeLa cells via ROS generation and cell cycle arrest.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...