Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(13): 9354-9364, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38517038

RESUMEN

Na3V2(PO4)3 (NVP) based on the multielectron reactions between V2+ and V5+ has been considered a promising cathode for sodium-ion batteries (SIBs). However, it still suffers from unsatisfactory stability, caused by the poor reversibility of the V5+/V4+ redox couple and structure evolution. Herein, we propos a strategy that combines high-entropy substitution and electrolyte optimization to boost the reversible multielectron reactions of NVP. The high reversibility of the V5+/V4+ redox couple and crystalline structure evolution are disclosed by in situ X-ray absorption near-edge structure spectra and in situ X-ray diffraction. Meanwhile, the electrochemical reaction kinetics of high-entropy substitution NVP (HE-NVP) can be further improved in the diglyme-based electrolyte. These enable HE-NVP to deliver a superior electrochemical performance (capacity retention of 93.1% after 2000 cycles; a large reversible capacity of 120 mAh g-1 even at 5.0 A g-1). Besides, the long cycle life and high power density of the HE-NVP∥natural graphite full-cell configuration demonstrated the superiority of HE-NVP cathode in SIBs. This work highlights that the synergism of high-entropy substitution and electrolyte optimization is a powerful strategy to enhance the sodium-storage performance of polyanionic cathodes for SIBs.

2.
ACS Appl Mater Interfaces ; 16(9): 11767-11777, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38408283

RESUMEN

In addition to the donor-acceptor nano phases, the intermixed phase within the organic blends is crucial for the photovoltaic performance and stability of the bulk-heterojunction organic solar cells (OSCs). Here, the intermixed phase of a representative M-PhS:BTP-eC9 all-small-molecule organic solar cell was investigated by a concentration-dependent ultraviolet-visible (UV-vis) absorption spectroscopy method, where a shift of the absorption maximum wavelength was measured for the acceptor component with the increase of the acceptor concentration. The blend ratios of the acceptor to the donor in the intermixed phase, corresponding to the critical concentration for the formation of the acceptor nanophase (CAP), were determined to be 0.35, 0.20, and 0.15 for the as-cast, thermal annealing (TA), and the combined TA and solvent vapor annealing films. These results indicated that M-PhS and BTP-eC9 are kinetically well intermixed during spin coating, whereas TA and the following solvent annealing promote the crystallization of BTP-eC9 molecules out of the intermixed phase. The photovoltaic performance of the M-PhS:BTP-eC9 cells with different blend ratios was investigated. The formation of the BTP-eC9 nano phase in the blend film leads to stable VOC and fast increased JSC, which can be understood by the reduction of bimolecular charge recombination and the formation of electron transporting pathways within the photoactive layer. Similarly, the critical concentration for the formation of the donor phase was estimated to be 0.15 by measuring the stabilized VOC and increased JSC values of the cells with different donor blending ratios. More importantly, after a fast "burn-in" thermal degradation, the M-PhS:BTP-eC9 cell showed excellent thermal stability aging at 85 °C for over 1128 h, which is in good accordance with the unchanged intermixed phases measured by the UV-vis spectra of the annealed films. The current work demonstrates the feasibility of the spectroscopy method to investigate the intermixed phases for organic bulk-heterojunction solar cells and proves that all-small-molecule solar cells can be intrinsically very stable.

3.
Small ; 20(6): e2307242, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37771206

RESUMEN

Photovoltaic thin film solar cells based on kesterite Cu2 ZnSn(S, Se)4 (CZTSSe) have reached 13.8% sunlight-to-electricity conversion efficiency. However, this efficiency is still far from the Shockley-Queisser radiative limit and is hindered by the significant deficit in open circuit voltage (VOC ). The presence of high-density interface states between the absorber layer and buffer or window layer leads to the recombination of photogenerated carriers, thereby reducing effective carrier collection. To tackle this issue, a new window structure ZnO/AgNW/ZnO/AgNW (ZAZA) comprising layers of ZnO and silver nanowires (AgNWs) is proposed. This structure offers a simple and low-damage processing method, resulting in improved optoelectronic properties and junction quality. The ZAZA-based devices exhibit enhanced VOC due to the higher built-in voltage (Vbi ) and reduced interface recombination compared to the usual indium tin oxide (ITO) based structures. Additionally, improved carrier collection is demonstrated as a result of the shortened collection paths and the more uniform carrier lifetime distribution. These advances enable the fabrication of the first ITO-free CZTSSe solar cells with over 10% efficiency without an anti-reflective coating.

4.
Adv Mater ; 36(7): e2305135, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37590909

RESUMEN

Sodium-ion batteries (SIBs) are a viable alternative to meet the requirements of future large-scale energy storage systems due to the uniform distribution and abundant sodium resources. Among the various cathode materials for SIBs, phosphate-based polyanionic compounds exhibit excellent sodium-storage properties, such as high operation voltage, remarkable structural stability, and superior safety. However, their undesirable electronic conductivities and specific capacities limit their application in large-scale energy storage systems. Herein, the development history and recent progress of phosphate-based polyanionic cathodes are first overviewed. Subsequently, the effective modification strategies of phosphate-based polyanionic cathodes are summarized toward high-performance SIBs, including surface coating, morphological control, ion doping, and electrolyte optimization. Besides, the electrochemical performance, cost, and industrialization analysis of phosphate-based polyanionic cathodes for SIBs are discussed for accelerating commercialization development. Finally, the future directions of phosphate-based polyanionic cathodes are comprehensively concluded. It is believed that this review can provide instructive insight into developing practical phosphate-based polyanionic cathodes for SIBs.

5.
Adv Mater ; 36(11): e2307280, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38100730

RESUMEN

The development of intrinsically stretchable organic photovoltaics (is-OPVs) with a high efficiency is of significance for practical application. However, their efficiencies lag far behind those of rigid or even flexible counterparts. To address this issue, an advanced top-illuminated OPV is designed and fabricated, which is intrinsically stretchable and has a high performance, through systematic optimizations from material to device. First, the stretchability of the active layer is largely increased by adding a low-elastic-modulus elastomer of styrene-ethylene-propylene-styrene tri-block copolymer (SEPS). Second, the stretchability and conductivity of the opaque electrode are enhanced by a conductive polymer/metal (denoted as M-PH1000@Ag) composite electrode strategy. Third, the optical and electrical properties of a sliver nanowire transparent electrode are improved by a solvent vapor annealing strategy. High-performance is-OPVs are successfully fabricated with a top-illuminated structure, which provides a record-high efficiency of 16.23%. Additionally, by incorporating 5-10% elastomer, a balance between the efficiency and stretchability of the is-OPVs is achieved. This study provides valuable insights into material and device optimizations for high-efficiency is-OPVs, with a low-cost production and excellent stretchability, which indicates a high potential for future applications of OPVs.

6.
Molecules ; 28(19)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37836699

RESUMEN

Improving thermal stability is of great importance for the industrialization of polymer solar cells (PSC). In this paper, we systematically investigated the high-temperature thermal annealing effect on the device performance of the state-of-the-art polymer:non-fullerene (PM6:Y6) solar cells with an inverted structure. Results revealed that the overall performance decay (19% decrease) was mainly due to the fast open-circuit voltage (VOC, 10% decrease) and fill factor (FF, 10% decrease) decays whereas short circuit current (JSC) was relatively stable upon annealing at 150 °C (0.5% decrease). Pre-annealing on the ZnO/PM6:Y6 at 150 °C before the completion of cell fabrication resulted in a 1.7% performance decrease, while annealing on the ZnO/PM6:Y6/MoO3 films led to a 10.5% performance decay, indicating that the degradation at the PM6:Y6/MoO3 interface is the main reason for the overall performance decay. The increased ideality factor and reduced built-in potential confirmed by dark J - V curve analysis further confirmed the increased interfacial charge recombination after thermal annealing. The interaction of PM6:Y6 and MoO3 was proved by UV-Vis absorption and XPS measurements. Such deep chemical doping of PM6:Y6 led to unfavorable band alignment at the interface, which led to increased surface charge recombination and reduced built-in potential of the cells after thermal annealing. Inserting a thin C60 layer between the PM6:Y6 and MoO3 significantly improved the cells' thermal stability, and less than 2% decay was measured for the optimized cell with 3 nm C60.

7.
Adv Mater ; 35(46): e2305092, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37487579

RESUMEN

Photovoltaic windows with easy installation for the power supply of household appliances have long been a desire of energy researchers. However, due to the lack of top electrodes that offer both high transparency and low sheet resistance, the development of high-transparency photovoltaic windows for indoor lighting scenarios has lagged significantly behind photovoltaic windows where privacy issues are involved. Addressing this issue, this work develops a solution-processable transparent top electrode using sandwich structure silver nanowires, realizing high transparency in semi-transparent organic solar cells. The wettability and conducting properties of the electrode are improved by a modified hole-transport layer named HP. The semi-transparent solar cell exhibits good see-through properties at a high average visible transmittance of 50.8%, with power conversion efficiency of 7.34%, and light utilization efficiency of 3.73%, which is the highest without optical modulations. Moreover, flexible devices based on the above-mentioned architecture also show excellent mechanical tolerance compared with Ag electrode counterparts, which retains 94.5% of their original efficiency after 1500 bending cycles. This work provides a valuable approach for fabricating solution-processed high transparency organic solar cells, which is essential in future applications in building integrated photovoltaics.

8.
Nature ; 620(7976): 994-1000, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37290482

RESUMEN

All-perovskite tandem solar cells promise higher power-conversion efficiency (PCE) than single-junction perovskite solar cells (PSCs) while maintaining a low fabrication cost1-3. However, their performance is still largely constrained by the subpar performance of mixed lead-tin (Pb-Sn) narrow-bandgap (NBG) perovskite subcells, mainly because of a high trap density on the perovskite film surface4-6. Although heterojunctions with intermixed 2D/3D perovskites could reduce surface recombination, this common strategy induces transport losses and thereby limits device fill factors (FFs)7-9. Here we develop an immiscible 3D/3D bilayer perovskite heterojunction (PHJ) with type II band structure at the Pb-Sn perovskite-electron-transport layer (ETL) interface to suppress the interfacial non-radiative recombination and facilitate charge extraction. The bilayer PHJ is formed by depositing a layer of lead-halide wide-bandgap (WBG) perovskite on top of the mixed Pb-Sn NBG perovskite through a hybrid evaporation-solution-processing method. This heterostructure allows us to increase the PCE of Pb-Sn PSCs having a 1.2-µm-thick absorber to 23.8%, together with a high open-circuit voltage (Voc) of 0.873 V and a high FF of 82.6%. We thereby demonstrate a record-high PCE of 28.5% (certified 28.0%) in all-perovskite tandem solar cells. The encapsulated tandem devices retain more than 90% of their initial performance after 600 h of continuous operation under simulated one-sun illumination.

9.
Small Methods ; 7(7): e2300224, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37029583

RESUMEN

Aiming to improve the environmental stability of organic photovoltaics, a multilayered SiOx Cy /a-SiNx (O):H composite barrier film coated with a hydrophobic perfluoro copolymer stop layer for polymer:non-fullerene solar cells is developed. The composite film is prepared by spin-coating of polysilicone and perhydropolysilazane (PHPS) following a densification process by vacuum ultraviolet irradiation in an inert atmosphere. The transformation of polysilicone and PHPS to SiOx Cy and a-SiNx (O):H is confirmed by Fourier transform infrared and energy-dispersive X-ray spectroscopy measurement. However, the as-prepared PHPS-derived silicon nitride (PDSN) can react with moisture in the ambient atmosphere, yielding microscale defects and a consequent poor barrier performance. Treating the incomplete PDSN with methanol vapor significantly densifies the film yielding low water vapor transmission rates (WVTRs)of 5.0 × 10-1 and 2.0 × 10-1 g m-2  d-1 for the one- and three-couple of SiOx Cy /a-SiNx (O):H (CON) composite films, respectively. By incorporating a thin hydrophobic perfluoro copolymer layer, the three-coupled methanol-treated CON film with a total thickness of 600 nm shows an extremely low WVTR of 8.7 × 10-4 g m-2  d-1 . No performance decay is measured for the PM6:Y6 and PM6:L8-BO cells after such an encapsulation process. These encapsulated polymer cells show good stability storaged at 25 °C/50% relative humidity, or under simulated extreme rainstorm tests.

10.
Nat Commun ; 14(1): 2301, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37085534

RESUMEN

Solid polymer electrolytes (SPEs), which are favorable to form intimate interfacial contacts with electrodes, are promising electrolyte of choice for long-cycling lithium metal batteries (LMBs). However, typical SPEs with easily oxidized oxygen-bearing polar groups exhibit narrow electrochemical stability window (ESW), making it impractical to increase specific capacity and energy density of SPE based LMBs with charging cut-off voltage of 4.5 V or higher. Here, we apply a polyfluorinated crosslinker to enhance oxidation resistance of SPEs. The crosslinked network facilitates transmission of the inductive electron-withdrawing effect of polyfluorinated segments. As a result, polyfluorinated crosslinked SPE exhibits a wide ESW, and the Li|SPE|LiNi0.5Co0.2Mn0.3O2 cell with a cutoff voltage of 4.5 V delivers a high discharge specific capacity of ~164.19 mAh g-1 at 0.5 C and capacity retention of ~90% after 200 cycles. This work opens a direction in developing SPEs for long-cycling high-voltage LMBs by using polyfluorinated crosslinking strategy.

11.
Natl Sci Rev ; 10(4): nwac285, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36960222

RESUMEN

Flexible organic solar cells (FOSCs) are one of the most promising power sources for aerospace aircraft due to their attractive advantages with high power-per-weight ratio and excellent mechanical flexibility. Understanding the performance and stability of high-performance FOSCs is essential for the further development of FOSCs for aerospace applications. In this paper, after systematic investigations on the performance of the state-of-the-art high-performance solar cells under thermal cycle and intensive UV irradiation conditions, in situ performance and stability tests of the solar cells in the 35 km stratospheric environment were carried out through a high-altitude balloon uploading. The encapsulated FOSCs with an area of 0.64 cm2 gave the highest power density of 15.26 mW/cm2 and an efficiency over 11%, corresponding to a power-per-weight ratio of over 3.32 kW/kg. More importantly, the cells showed stable power output during the 3-h continuous flight at 35 km and only 10% performance decay after return to the lab, suggesting promising stability of the FOSCs in the stratospheric environment.

12.
Adv Mater ; 35(2): e2207656, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36314390

RESUMEN

Perovskite solar cells (PSCs) longevity is nowadays the bottleneck for their full commercial exploitation. Although lot of research is ongoing, the initial decay of the output power - an effect known as "burn-in" degradation happening in the first 100 h - is still unavoidable, significantly reducing the overall performance (typically of >20%). In this paper, the origin of the "burn-in" degradation in n-i-p type PSCs is demonstrated that is directly related to Li+ ions migration coming from the SnO2 electron transporting layer visualized by time-of-flight secondary ion mass spectrometry (TOF-SIMS) measurements. To block the ion movement, a thin cross-linked [6,6]-phenyl-C61-butyric acid methyl ester layer on top of the SnO2 layer is introduced, resulting in Li+ immobilization. This results in the elimination of the "burn-in" degradation, showing for the first time a zero "burn-in" loss in the performances while boosting device power conversion efficiency to >22% for triple-cation-based PSCs and >24% for formamidinium-based (FAPbI3 ) PSCs, proving the general validity of this approach and creating a new framework for the realization of stable PSCs devices.

13.
Adv Mater ; 34(45): e2206269, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36106624

RESUMEN

With the continuous breakthrough of the efficiency of organic photovoltaics (OPVs), their practical applications are on the agenda. However, the thickness tolerance and upscaling in recently reported high-efficiency devices remains challenging. In this work, the multiphase morphology and desired carrier behaviors are realized by utilizing a quaternary strategy. Notably, the exciton separation, carrier mobility, and carrier lifetime are enhanced significantly, the carrier recombination and the energy loss (Eloss ) are reduced, thus beneficial for a higher short-circuit density (JSC ), fill factor (FF), and open-circuit voltage (VOC ) of the quaternary system. Moreover, the intermixing-phase size is optimized, which is favorable for constructing the thick-film and large-area devices. Finally, the device with a 110 nm-thick active layer shows an outstanding power conversion efficiency (PCE) of 19.32% (certified 19.35%). Furthermore, the large-area (1.05 and 72.25 cm2 ) devices with 110 nm thickness present PCEs of 18.25% and 12.20%, and the device with a 305 nm-thick film (0.0473 cm2 ) delivers a PCE of 17.55%, which are among the highest values reported. The work demonstrates the potential of the quaternary strategy for large-area and thick-film OPVs and promotes the practical application of OPVs in the future.

14.
Adv Mater ; 34(33): e2203379, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35765940

RESUMEN

Forming an ideal bulk heterojunction (BHJ) morphology is a critical issue governing the photon to electron process in organic solar cells (OSCs). Complementary to the widely-used blend casting (BC) method for BHJ construction, sequential casting (SC) can also enable similar or even better morphology and device performance for OSCs. Here, BC and SC methods on three representative donor:acceptor (D:A) blends are utilized, that is, PM6:PC71 BM, PM6:IT-4F and PM6:L8-BO. Higher power conversion efficiencies (PCEs) in all cases by taking advantage of beneficial morphology from SC processing are achieved, and a champion PCE of 18.86% (certified as 18.44%) based on the PM6:L8-BO blend is reached, representing the record value among binary OSCs. The observations on phase separation and vertical distribution inspire the proposal of the swelling-intercalation phase-separation model to interpret the morphology evolution during SC processing. Further, the vertical phase segregation is found to deliver an improvement of device performance via affecting the charge transport and collection processes, as evidenced by the D:A-ratio-dependent photovoltaic properties. Besides, OSCs based on SC processing show advantages on device photostability and upscale fabrication. This work demonstrates the versatility and efficacy of the SC method for BHJ-based OSCs.

15.
J Org Chem ; 87(8): 5057-5064, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35333523

RESUMEN

4,4'-Spiro-bis[cyclopenta[2,1-b;3,4-b']dithiophene] (SCT) is a versatile building block for constructing three-dimensional (3D) π-conjugated molecules for use in organic electronics. In this paper, we report a more convenient synthetic route to SCT and its derivatives, where a structurally symmetric 3,3'-dibromo-5,5'-bis(trimethylsilyl)-2,2'-bithiophene (2) serves as the precursor for both the synthesis of 4H-cyclopenta[2,1-b:3,4-b']dithiophen-4-one (4) and 4-(5,5'-bis(trimethylsilyl)-2,2'-bithiophen-3-yl)-2,6-bis(trimethylsilyl)-4-hydroxy-cyclopenta[2,1-b;3,4-b']dithiophene (5). The later one is the key intermediate for the final brominated SCT building block. Such a "two birds with one stone" strategy simplifies the synthetic approach to the SCT core. Functionalization on the SCT core with different terminal electron-deficient groups, including 1H-indene-1,3(2H)-dione (ID), 2-(3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (IC), and 2-(5,6-difluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (FIC), was carried out, yielding three spiro-conjugated A-D-A type molecules, SCT-(TID)4, SCT-(TIC)4, SCT-(TFIC)4, respectively. The optical spectroscopy and electrochemical properties of these three compounds were investigated and compared to the corresponding linear oligomers. Results revealed that the IC and TFIC terminated compounds showed low-lying HOMO/LUMO energy levels with reduced optical bandgap, making them more suitable for use in polymer solar cells. A power conversion efficiency of 3.73% was achieved for the SCT-(TFIC)4 based cell, demonstrating the application perspective of 3D molecules.

16.
Macromol Rapid Commun ; 43(22): e2200139, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35319114

RESUMEN

All-polymer solar cells (all-PSCs) are one of the most promising application-oriented organic photovoltaic technologies due to their excellent operational and mechanical stability. However, the power conversion efficiencies (PCEs) are mostly lower than 16%, restricting their core competitiveness. Furthermore, the improvement of mechanical durability is rarely paid attention to cutting-edge all-PSCs. This work deploys a low-cost "technical grade" PCBM (incompletely separated but pure mixtures containing ≥90% [70]PCBM or [60]PCBM), into the efficient PM6:PY-IT all-polymer blend, successfully yielding a high-performance ternary device with 16.16% PCE, among the highest PCE values for all-PSCs. Meanwhile, an excellent mechanical property (i.e., crack onset strain = 11.1%) promoted from 9.5% for the ternary system is also demonstrated. The "technical grade" PCBM slightly disrupts the crystallization of polymers, and disperses well into the amorphous polymer regions of the all-PSC blends, thus facilitating charge transport and improving film ductility simultaneously. All these results confirm introducing low-cost "technical grade" PCBM with high electron mobility into all-polymer blends can improve carrier mobility, reduce charge recombination, and optimize morphology of the amorphous polymer regions, thus yielding more efficient and mechanically durable all-PSCs.

17.
Adv Mater ; 34(17): e2110276, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35243697

RESUMEN

Printed metal nanogrid electrode exhibits superior characteristics for use in flexible organic solar cells (OSCs). However, the high surface roughness and inhomogeneity between grid and blank region is adverse for performance improvement. In this work, a thin amorphous indium tin oxide (ITO) film (α-ITO) is introduced to fill the blank and to improve the charge transporting. The introduction of α-ITO significantly improves the comprehensive properties of metal grid electrode, which exhibits excellent bending resistance and long-term stability under double 85 condition (under 85 °C and 85% relative humidity) for 200 h. Both experimental and simulation results reveal α-ITO with a sheet resistance of 20 000 Ω â–¡-1 is sufficient to improve the charge transporting within the adjacent grids, leading to a remarkable efficiency of 16.54% for 1 cm2 flexible devices. With area increased to 4.00, 9.00, and 25.42 cm2 , the devices still display a performance of 16.22%, 14.69%, and 12.42%, respectively, showing less efficiency loss during upscaling. And the 25.42 cm2 monolithic flexible device exhibits a certificated efficiency of 12.03%. Moreover, the device shows significantly improved air stability relative to conventional high-conductive poly(3,4-ethylenedioxythiophene):polystyrene sulfonate-modified device. All these make the α-ITO-modified Ag/Cu electrode promise to achieve high-efficient and long-term stable large-area flexible OSCs.

18.
Adv Sci (Weinh) ; 9(7): e2104588, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35032362

RESUMEN

Despite the tremendous efforts in developing non-fullerene acceptor (NFA) for polymer solar cells (PSCs), only few researches are done on studying the NFA molecular structure dependent stability of PSCs, and long-term stable PSCs are only reported for the cells with low efficiency. Herein, the authors compare the stability of inverted PM6:NFA solar cells using ITIC, IT-4F, Y6, and N3 as the NFA, and a decay rate order of IT-4F > Y6 ≈ N3 > ITIC is measured. Quantum chemical calculations reveal that fluorine substitution weakens the C═C bond and enhances the interaction between NFA and ZnO, whereas the ß-alkyl chains on the thiophene unit next to the C═C linker blocks the attacking of hydroxyl radicals onto the C═C bonds. Knowing this, the authors choose a bulky alkyl side chain containing molecule (named L8-BO) as the acceptor, which shows slower photo bleaching and performance decay rates. A combination of ZnO surface passivation with phenylethanethiol (PET) yields a high efficiency of 17% and an estimated long T80 and Ts80 of 5140 and 6170 h, respectively. The results indicate functionalization of the ß-position of the thiophene unit is an effective way to improve device stability of the NFA.

19.
ACS Appl Mater Interfaces ; 13(15): 17869-17881, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33847479

RESUMEN

For the inverted organic solar cells (OSCs), the interface contacts between the ZnO electron transporting layer and the organic active layer play an important role in the device performance and stability. Since the solution-processed ZnO surface always contains some base or zinc salt contaminants, we explored how the surface pH conditions influence the performance and stability of the nonfullerene acceptor (NFA) cells. A tight relationship between the surface pH condition and the device performance and stability was established. Specifically, device performance and stability were improved by treating the ZnO films with acid solutions but worsened after base treatment. The large number of hydroxyl groups on the surface of the solution-processed ZnO films was proved to be the main reason for the surface pH condition-related performance, which caused oxygen-deficient defects and unfavorable vertical phase separation in the blend films, hindered the photogenerated charge transfer and collection, and consequently resulted in low short-circuit current density and power conversion efficiency (PCE). The surface -OH groups also boosted the photocatalytic activity and led to fast degradation of the nonfullerene acceptor. Removal of the surface -OH groups can alleviate such problems. Different acid solutions, ZrAcac, 2-phenylethylmercaptan (PET), and glutamic acid (GC), were used to treat the ZnO films, and PET treatment was the most effective treatment for performance improvement. An efficiency of 16.46% was achieved for the PM6:Y6 cells and the long-term stability under continuous illumination conditions was significantly improved with a T80 lifetime of over 4000 h (4410 h), showing the excellent long-term stability of this heterojunction solar cell. Our understanding of the surface pH condition-related device performance and stability would guide the development of a feasible method for solving the interface problems in OSCs. We also provide a practical strategy to modify ZnO with acid solutions for high-performance and stable NFA OSCs.

20.
ACS Appl Mater Interfaces ; 12(13): 15472-15481, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32138508

RESUMEN

Piperazine has been recently reported as a stabilizer for polymer:fullerene solar cells that can minimize the "burn-in" degradation of the cell. In this paper, the influence of N-substituents on the stabilization effect of piperazine in P3HT:PC61BM cells was investigated. Results confirmed that only piperazine derivatives (PZs) with N-H bonds showed the stabilization effect, whereas the bis-alkyl-substituted piperazine compounds cannot improve the stability. An efficient photon-induced electron transfer (PET) process between PZ and PC61BM was only detected for the N-H-containing PZ:PC61BM blends, corresponding very well to the stabilization effect of the PZs, which indicates that the PET process between PZ and PC61BM stabilizes the cell performance, and the N-H bond plays a critical role ensuring the PET process and the consequent stabilization effect. Both 1H-NMR spectroscopy and theoretical calculations confirmed the formation of N-H···O-C and N-H···π bonds for the PC61BM:piperazine adduct, which was considered as the driving force that promotes the PET process between these two components. In addition, comparison of the calculated electron affinity energy (EA) and excitation energy (EEx) of PC61BM with/without piperazine confirmed that piperazine doping is able to promote the electron transfer (which leads to the formation of PC61BM anions) than the energy transfer (leads to the formation of PC61BM excitons) between P3HT and PC61BM, which is beneficial for the performance and stability improvement.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...