Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 14(7): 4543-4555, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38312726

RESUMEN

Due to their high wavelength selectivity and strong anti-interference capability, solar-blind UV photodetectors hold broad and important application prospects in fields like flame detection, missile warnings, and secure communication. Research on solar-blind UV detectors for amorphous Ga2O3 is still in its early stages. The presence of intrinsic defects related to oxygen vacancies significantly affects the photodetection performance of amorphous Ga2O3 materials. This paper focuses on growing high quality amorphous Ga2O3 films on silicon substrates through atomic layer deposition. The study investigates the impact of annealing atmospheres on Ga2O3 films and designs a blind UV detector for Ga2O3. Characterization techniques including atomic force microscopy (AFM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) are used for Ga2O3 film analysis. Ga2O3 films exhibit a clear transition from amorphous to polycrystalline after annealing, accompanied by a decrease in oxygen vacancy concentration from 21.26% to 6.54%. As a result, the response time of the annealed detector reduces from 9.32 s to 0.47 s at an external bias of 10 V. This work demonstrates that an appropriate annealing process can yield high-quality Ga2O3 films, and holds potential for advancing high-performance solar blind photodetector (SBPD) development.

2.
Nanomaterials (Basel) ; 12(23)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36500879

RESUMEN

In this work, the atomic level doping of Sn into Ga2O3 films was successfully deposited by using a plasma-enhanced atomic layer deposition method. Here, we systematically studied the changes in the chemical state, microstructure evolution, optical properties, energy band alignment, and electrical properties for various configurations of the Sn-doped Ga2O3 films. The results indicated that all the films have high transparency with an average transmittance of above 90% over ultraviolet and visible light wavelengths. X-ray reflectivity and spectroscopic ellipsometry measurement indicated that the Sn doping level affects the density, refractive index, and extinction coefficient. In particular, the chemical microstructure and energy band structure for the Sn-doped Ga2O3 films were analyzed and discussed in detail. With an increase in the Sn content, the ratio of Sn-O bonding increases, but by contrast, the proportion of the oxygen vacancies decreases. The reduction in the oxygen vacancy content leads to an increase in the valence band maximum, but the energy bandgap decreases from 4.73 to 4.31 eV. Moreover, with the increase in Sn content, the breakdown mode transformed the hard breakdown into the soft breakdown. The C-V characteristics proved that the Sn-doped Ga2O3 films have large permittivity. These studies offer a foundation and a systematical analysis for assisting the design and application of Ga2O3 film-based transparent devices.

3.
ACS Appl Mater Interfaces ; 12(27): 30538-30547, 2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32539324

RESUMEN

The resistive switching behavior in resistive random access memories (RRAMs) using atomic-layer-deposited Ga2O3/ZnO composite film as the dielectric was investigated. By alternatively atomic-layer-depositing Ga2O3 and ZnO with different thickness, we can accurately control the oxygen vacancy concentration. When regulating ZnO to ∼31%, the RRAMs exhibit a forming-free property as well as outstanding performance, including the ratio of a high resistance state to the low resistance state of 1000, retention time of more than 1 × 104 s, and the endurance of 100. By preparing RRAMs of different Zn concentration, we carried out a comparative study and explored the physical origin for the forming-free property as well as good performance. Finally, a unified model is proposed to account for the resistive switching and the current conduction mechanism, providing meaningful insights in the development of high-quality and forming-free RRAMs for future memory and neuromorphic applications.

4.
Nanoscale ; 12(13): 7159-7173, 2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-32193525

RESUMEN

As a well-known semiconductor that can catalyse the oxygen evolution reaction, TiO2 has been extensively investigated for its solar photoelectrochemical water properties. Unmodified TiO2 shows some issues, particularly with respect to its photoelectrochemical performance. In this paper, we present a strategy for the controlled deposition of controlled amounts of GaOxNy cocatalysts on TiO2 1D nanowires (TiO2@GaOxNy core-shell) using atomic layer deposition. We show that this modification significantly enhances the photoelectrochemical performance compared to pure TiO2 NW photoanodes. For our most active TiO2@GaOxNy core-shell nanowires with a GaOxNy thickness of 20 nm, a photocurrent density up to 1.10 mA cm-2 (at 1.23 V vs. RHE) under AM 1.5 G irradiation (100 mW cm-2) has been achieved, which is 14 times higher than that of unmodified TiO2 NWs. Furthermore, the band gap matching with TiO2 enhances the absorption of visible light over unmodified TiO2 and the facile oxygen vacancy formation after the deposition of GaOxNy also provides active sites for water activation. Density functional theory studies of model systems of GaOxNy-modified TiO2 confirm the band gap reduction, high reducibility and ability to activate water. The highly efficient and stable systems of TiO2@GaOxNy core-shell nanowires with ALD deposited GaOxNy demonstrate a good strategy for the fabrication of core-shell structures that enhance the photoelectrochemical performance of readily available photoanodes.

5.
J Colloid Interface Sci ; 568: 81-88, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32088454

RESUMEN

Development of high-performance ammonia (NH3) sensor is imperative for monitoring NH3 in the living environment. In this work, to obtain a high performance NH3 gas sensor, structurally well-defined WO3@SnO2 core shell nanosheets with a controllable thickness of SnO2 shell layer have been employed as sensing materials. The prepared core shell nanosheets were used to obtain a miniaturized gas sensor based on micro-electro-mechanical system (MEMS). By tuning the thickness of SnO2 layer via atomic layer deposition, a series of WO3@SnO2 core-shell nanosheets with tunable sensing properties were realized. Particularly, the sensor base on the fabricated WO3@SnO2 nanosheets with 20-nm SnO2 shell layer demonstrated superior gas sensing performance with the highest response (1.55) and selectivity toward 15 ppm NH3 at 200 °C. This remarkable enhancement of NH3 sensing ability could be ascribed to the formation of unique WO3-SnO2 core-shell heterojunction structure. The detailed mechanism was elucidated by the heterojunction-depletion model with the help of specific band alignment.

6.
Microsyst Nanoeng ; 6: 30, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-34567644

RESUMEN

Highly sensitive and selective hydrogen sulfide (H2S) sensors based on hierarchical highly ordered SnO2 nanobowl branched ZnO nanowires (NWs) were synthesized via a sequential process combining hard template processing, atomic-layer deposition, and hydrothermal processing. The hierarchical sensing materials were prepared in situ on microelectromechanical systems, which are expected to achieve high-performance gas sensors with superior sensitivity, long-term stability and repeatability, as well as low power consumption. Specifically, the hierarchical nanobowl SnO2@ZnO NW sensor displayed a high sensitivity of 6.24, a fast response and recovery speed (i.e., 14 s and 39 s, respectively), and an excellent selectivity when detecting 1 ppm H2S at 250 °C, whose rate of resistance change (i.e., 5.24) is 2.6 times higher than that of the pristine SnO2 nanobowl sensor. The improved sensing performance could be attributed to the increased specific surface area, the formation of heterojunctions and homojunctions, as well as the additional reaction between ZnO and H2S, which were confirmed by electrochemical characterization and band alignment analysis. Moreover, the well-structured hierarchical sensors maintained stable performance after a month, suggesting excellent stability and repeatability. In summary, such well-designed hierarchical highly ordered nanobowl SnO2@ZnO NW gas sensors demonstrate favorable potential for enhanced sensitive and selective H2S detection with long-term stability and repeatability.

7.
ACS Appl Mater Interfaces ; 11(35): 32127-32134, 2019 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-31403281

RESUMEN

The issue of contacts between the electrode and channel layer is crucial for wide-bandgap semiconductors, especially the ß-Ga2O3 due to its ultra-large bandgap (4.6-4.9 eV). It affects the device performance greatly and thus needs special attention. In this work, the high-performance ß-Ga2O3 nanobelt field-effect transistors with Ohmic contact between multilayer metal stack Ti/Al/Ni/Au (30/120/50/50 nm) and unintentionally doped ß-Ga2O3 channel substrate have been fabricated. The formation mechanism of Ohmic contacts to ß-Ga2O3 under different annealing temperatures in an N2 ambient is systematically investigated by X-ray photoelectron spectroscopy. It is revealed that the oxygen vacancies at the interface of ß-Ga2O3/intermetallic compounds formed during rapid thermal annealing are believed to induce the good Ohmic contacts with low resistance. The contact resistance (Rc) between electrodes and unintentionally doped ß-Ga2O3 reduces to ∼9.3 Ω mm after annealing. This work points to the importance of contact engineering for future improved ß-Ga2O3 device performance and lays a solid foundation for the wider application of ß-Ga2O3 in electronics and optoelectronics.

8.
Nanoscale Res Lett ; 14(1): 119, 2019 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-30941586

RESUMEN

Vertically aligned carbon nanotube arrays (VACNTs) show a great potential for various applications, such as thermal interface materials (TIMs). Besides the thermally oxidized SiO2, atomic layer deposition (ALD) was also used to synthesize oxide buffer layers before the deposition of the catalyst, such as Al2O3, TiO2, and ZnO. The growth of VACNTs was found to be largely dependent on different oxide buffer layers, which generally prevented the diffusion of the catalyst into the substrate. Among them, the thickest and densest VACNTs could be achieved on Al2O3, and carbon nanotubes were mostly triple-walled. Besides, the deposition temperature was critical to the growth of VACNTs on Al2O3, and their growth rate obviously reduced above 650 °C, which might be related to the Ostwald ripening of the catalyst nanoparticles or subsurface diffusion of the catalyst. Furthermore, the VACNTs/graphene composite film was prepared as the thermal interface material. The VACNTs and graphene were proved to be the effective vertical and transverse heat transfer pathways in it, respectively.

9.
Nanomaterials (Basel) ; 9(1)2019 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-30609822

RESUMEN

Atomic scale control of the thickness of thin film makes atomic layer deposition highly advantageous in the preparation of high quality super-lattices. However, precisely controlling the film chemical stoichiometry is very challenging. In this study, we deposited SiOx film with different stoichiometry by plasma enhanced atomic layer deposition. After reviewing various deposition parameters like temperature, precursor pulse time, and gas flow, the silicon dioxides of stoichiometric (SiO2) and non-stoichiometric (SiO1.8 and SiO1.6) were successfully fabricated. X-ray photo-electron spectroscopy was first employed to analyze the element content and chemical bonding energy of these films. Then the morphology, structure, composition, and optical characteristics of SiOx film were systematically studied through atomic force microscope, transmission electron microscopy, X-ray reflection, and spectroscopic ellipsometry. The experimental results indicate that both the mass density and refractive index of SiO1.8 and SiO1.6 are less than SiO2 film. The energy band-gap is approved by spectroscopic ellipsometry data and X-ray photo-electron spectroscopy O 1s analysis. The results demonstrate that the energy band-gap decreases as the oxygen concentration decreases in SiOx film. After we obtained the Si-rich silicon oxide film deposition, the SiO1.6/SiO2 super-lattices was fabricated and its photoluminescence (PL) property was characterized by PL spectra. The weak PL intensity gives us greater awareness that more research is needed in order to decrease the x of SiOx film to a larger extent through further optimizing plasma-enhanced atomic layer deposition processes, and hence improve the photoluminescence properties of SiOx/SiO2 super-lattices.

10.
Nanomaterials (Basel) ; 8(12)2018 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-30563091

RESUMEN

In this study, silicon nitride (SiNx) thin films with different oxygen concentration (i.e., SiON film) were precisely deposited by plasma enhanced atomic layer deposition on Si (100) substrates. Thus, the effect of oxygen concentration on film properties is able to be comparatively studied and various valuable results are obtained. In detail, x-ray reflectivity, x-ray photoelectron spectroscopy, atomic force microscopy, and spectroscopic ellipsometry are used to systematically characterize the microstructural, optical, and electrical properties of SiON film. The experimental results indicate that the surface roughness increases from 0.13 to 0.2 nm as the oxygen concentration decreases. The refractive index of the SiON film reveals an increase from 1.55 to 1.86 with decreasing oxygen concentration. Accordingly, the band-gap energy of these films determined by oxygen 1s-peak analysis decreases from 6.2 to 4.8 eV. Moreover, the I-V tests demonstrate that the film exhibits lower leakage current and better insulation for higher oxygen concentration in film. These results indicate that oxygen affects microstructural, optical, and electrical properties of the prepared SiNx film.

11.
Surg Neurol ; 72 Suppl 2: S47-9, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19664804

RESUMEN

BACKGROUND: International travel industry in Taiwan is expanding. The number of people traveling abroad was approximately 480,000 people in 1980; 2,940,000 in 1990; 7,320,000 in 2000, and in 2007, it has reached 8,960,000, which was more than one third of total population. Air medical transportation will be necessary when local medical facilities do not approximate the international standards. No previous study on epidemiology in Taiwan on patients received international medical repatriation. This is the first report to discuss the epidemiology of Taiwan's international aeromedical transportation and its focus on neurologic diseases. METHOD: Retrospective analysis of all international aeromedical transports on Taiwanese patients from October 2005 to September 2007 was performed. All materials were collected from the databank of International SOS, Taipei. The data were analyzed with Microsoft Excel and SPSS v. 11.0 software (SPSS, Chicago, Ill). RESULTS: A total of 416 patients were transported. Excluding expatriates transported outbound and 2-stage inbound transports, the Taiwanese patient number with international aeromedical transport was 379; 51 by air ambulance and 328 commercially. There were 271 male (72%) and 108 female patients (18%). Of the 379 patients, 178 (47%) were neurologic diseases. Two hundred ninety-five (78%) patients were transported from China. Patient transports peaked in autumn by 105 (28%). Of all 33 ventilated patients, 12 (36%) were neurologic diseases. In-flight complications occurred in 10% of neurologic and 2% of nonneurologic cases. No in-flight mortality occurred in both groups. CONCLUSION: Neurologic diseases comprise most of the Taiwanese patients that requires medical transportation. With relatively suboptimal medical standard and high medical expenses in China, patients with neurologic conditions need timely and safe aeromedical transport than those with other diseases. Transport of patients with neurologic diseases, either by air ambulance or commercial flights, can only be safely performed by well-trained medical escorts and comprehensive logistic arrangements.


Asunto(s)
Salud Global , Enfermedades del Sistema Nervioso/epidemiología , Transferencia de Pacientes/tendencias , Transporte de Pacientes/tendencias , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Ambulancias Aéreas , Aviación , Niño , Preescolar , Femenino , Costos de la Atención en Salud , Humanos , Incidencia , Lactante , Recién Nacido , Control de Infecciones , Cooperación Internacional , Internacionalidad , Masculino , Persona de Mediana Edad , Transferencia de Pacientes/estadística & datos numéricos , Estudios Retrospectivos , Taiwán/epidemiología , Transporte de Pacientes/estadística & datos numéricos , Viaje , Resultado del Tratamiento , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...