Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
R Soc Open Sci ; 5(9): 180528, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30839692

RESUMEN

Targeting fibroblast-like synoviocyte (FLS) migration and invasion-mediated bone erosion is a promising clinical strategy for the treatment of rheumatoid arthritis (RA). Drug sensitivity testing is fundamental to this scheme. We designed a microfluidic chip-based, cell co-cultured platform to mimic RA FLS-mediated bone erosion and perform drug-sensitive assay. Human synovium SW982 cells were cultured in the central channel and migrated to flow through matrigel-coated side channels towards cell culture chamber where RANKL-stimulated osteoclastic RAW264.7 and osteogenic medium (OS)-stimulated bone marrow mesenchymal stem cells (BMSC) were cultured in the microfluidic chip device, mimicking FLS migration and invasion-mediated bone erosion in RA. These SW982 cells showed different migration potentials to osteoclasts and BMSC. The migration of SW982 cells with high expression of cadherin-11 was more potent when SW982 cells were connected with the co-culture of RAW264.7 and BMSC. Simultaneously, in the co-cultured chamber, tartrate-resistant acid phosphatase (TRAP) activity of RANKL-stimulated RAW264.7 cells was enhanced, but alkaline phosphatase (ALP) activity was decreased in comparison with mono-cultured chamber. Furthermore, it was confirmed that celastrol, a positive drug for the treatment of RA, inhibited SW982 cell migration as well as TRAP activity in the cell-cultured microfluidic chips. Thus, the migration and invasion to bone-related cells was reconstituted on the microfluidic model. It may provide an effective anti-RA drug screen model for targeting FLS migration-mediated bone erosion.

2.
Front Pharmacol ; 7: 375, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27803667

RESUMEN

Bone remodeling balance is maintained by tight coupling of osteoblast-mediated bone formation and osteoclast-mediated bone resorption. Thus, agents with the capacity to regulate osteoblastogenesis and osteoclastogenesis have been investigated for therapy of bone-related diseases such as osteoporosis. In this study, we found that wedelolactone, a compound isolated from Ecliptae herba, and a 9-day incubation fraction of conditioned media obtained from wedelolactone-treated bone marrow mesenchymal stem cell (BMSC) significantly inhibited tartrate-resistant acid phosphatase (TRAP) activity in RANKL-stimulated osteoclastic RAW264.7 cells. Addition of the semaphorin 3A (Sema3A) antibody to the conditioned media partially blocked the medium's inhibitory effects on the RAW264.7 cells. In BMSC, mRNA expression of Sema3A increased in the presence of different wedelolactone concentrations. Blocking Sema3A activity with its antibody reversed wedelolactone-induced alkaline phosphatase activity in BMSC and concurrently enhanced wedelolactone-reduced TRAP activity in osteoclastic RAW264.7 cells. Moreover, in BMSC, wedelolactone enhanced binding of Sema3A with cell-surface receptors, including neuropilin (NRP)1 and plexinA1. Furthermore, nuclear accumulation of ß-catenin, a transcription factor acting downstream of wedelolactone-induced Sema3A signaling, was blocked by the Sema3A antibody. In osteoclastic RAW264.7 cells, conditioned media and wedelolactone promoted the formation of plexin A1-NRP1, but conditioned media also caused the sequestration of the plexin A1-DNAX-activating protein 12 (DAP12) complex and suppressed the phosphorylation of phospholipase C (PLC)γ2. These data suggest that wedelolactone promoted osteoblastogenesis through production of Sema3A, thus inducing the formation of a Sema3A-plexinA1-Nrp1 complex and ß-catenin activation. In osteoclastic RAW264.7 cells, wedelolactone inhibited osteoclastogenesis through sequestration of the plexinA1-DAP12 complex, induced the formation of plexinA1-Nrp1 complex, and suppressed PLCγ2 activation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...