Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Dalton Trans ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38804874

RESUMEN

Photocatalytic hydrogen (H2) evolution can effectively solve the global energy problem, in which the key factor is the synthesis of efficient photocatalytic materials. In this study, we successfully synthesized a novel photocatalyst, BiWCo/CuS/PGCN, by functionalizing porous graphitic carbon nitride (PGCN) with sandwich-type polyoxometalate Na3.5Co4[Bi2Co2W19.75O70(H2O)6]·39.5H2O (BiWCo) and introducing copper sulfide (CuS) nanoparticles as a cocatalyst. This approach was aimed at enhancing the built inner electric field between interfaces, resulting in a significant improvement in photocatalytic H2 evolution performance. This research adopts a step-by-step method to synthesize BiWCo/CuS/PGCN composites with p-n heterojunctions, which has high visible light absorption and a synergistic effect of multiple elements. PGCN with a high specific surface area contributes to the uniform distribution of active sites. In addition, the nano-CuS cocatalyst provides abundant active sites and more electron transfer pathways for photocatalysis. Therefore, the H2 production efficiency of BiWCo/CuS/PGCN is 6.3 times that of PGCN, 4.5 times that of BiWCo and 2.5 times that of BiWCo/PGCN under visible light. The H2 production rate of BiWCo/CuS/PGCN reaches 3477.58 µmol g-1 h-1. At the same time, the ternary photocatalyst shows high stability after 30 hours and 5 cycles. This work demonstrates that BiWCo/CuS/PGCN has good application prospects in H2 evolution, and provides a new strategy for the design of efficient ternary photocatalytic materials.

2.
J Colloid Interface Sci ; 666: 496-504, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38613972

RESUMEN

MoS2-based materials have emerged as photoelectric semiconductors characterized by a narrow band gap, high capacity for absorbing visible light, and reduced H2 adsorption energy comparable to Pt. These attributes render them appealing for application in photocatalytic hydrogen production. Despite these advantages, the widespread adoption of MoS2-based materials remains hindered by challenges associated with limited exposure to active sites and suboptimal catalytic hydrogen production efficiency. To address these issues, we have designed and synthesized a new class of highly dispersed bimetallic/trimetallic sulfide materials. This was achieved by developing polyoxometalate synthons containing Ni-Mo elements, which were subsequently reacted with thiourea and CdS. The resulting Ni3S2-MoS2 and Ni3S2-MoS2-CdS materials achieve photocatalytic hydrogen production rates of 2770 and 2873 µmol g-1h-1, respectively. Notably, the rate of 2873 µmol g-1h-1 for Ni3S2-MoS2-CdS surpassed triple (3.23 times) the performance of CdS and nearly sextuple (5.77 times) that of single MoS2. These materials outperformed the majority of MoS2-based photocatalysts. Overall, this study introduces a straightforward methodology for synthesizing bimetallic/trimetallic sulfides with enhanced photocatalytic H2 evolution performance. Our findings underscore the potential of transition metal sulfide semiconductors in the realm of photocatalysis and pave the way for the development of more sustainable energy production systems.

3.
J Colloid Interface Sci ; 659: 312-319, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38176240

RESUMEN

Heteroatom doping and phase engineering are effective ways to promote the catalytic activity of nanoenzymes. Nitrogen-doped 1 T/2H mixed phase MoS2/CuS heterostructure nanosheets N-1 T/2H-MoS2/CuS are prepared by a simple hydrothermal approach using polyoxometalate (POM)-based metal-organic frameworks (MOFs) (NENU-5) as a precursor and urea as nitrogen doping reagent. The XPS spectroscopy (XPS) and Raman spectrum of N-1 T/2H-MoS2/CuS prove the successful N-doping. NENU-5 was used as the template to prepare 1 T/2H-MoS2/CuS with high content of 1 T phase by optimizing the reaction time. The use of urea as nitrogen dopant added to 1 T/2H-MoS2/CuS, resulted in N-1 T/2H-MoS2/CuS with an increase in the content of the 1 T phase from 80 % to 84 % and higher number of defects. N-1 T/2H-MoS2/CuS shows higher peroxidase activity than 1 T/2H-MoS2/CuS and a catalytic efficiency (Kcat/Km) for H2O2 twice as high as that of 1 T/2H-MoS2/CuS. The enhanced catalytic activity has probably been attributed to several reasons: (i) the insertion of urea during the hydrothermal process in the S-Mo-S layer of MoS2, causing an increase in the interlayer spacing and in 1 T phase content, (ii) the replacement of S atoms in MoS2 by N atoms from the urea decomposition, resulting in more defects and more active sites. As far as we know, N-1 T/2H-MoS2/CuS nanosheets have the lowest detection limit (0.16 µm) for the colorimetric detection of hydroquinone among molybdenum disulfide-based catalysts. This study affords a new approach for the fabrication of high-performance nanoenzyme catalysts.

4.
Inorg Chem ; 63(1): 860-869, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38141027

RESUMEN

In this work, hollow CoS2 particles were prepared by a one-step sulfurization strategy using polyoxometalate-based metal-organic frameworks as the precursor. The morphology and structure of CoS2 have been monitored by scanning electron microscopy, X-ray photoelectron spectroscopy, and X-ray powder diffraction. The mechanism for the formation of CoS2 is discussed. The reaction time and sulfur content are found to be important factors that affect the morphology and pure phase formation of CoS2, and a hollow semioctahedral morphology of CoS2 with open voids was obtained when the sulfur source was twice as large as the precursor and the reaction time was 24 h. The CoS2 (24 h) particles show an excellent peroxidase-like activity for the oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue oxidized (oxTMB) by hydrogen peroxide. The polyoxometalate used as a precursor helps to stabilize oxTMB during catalytic oxidation, forming a stable curve platform for at least 8 min. Additionally, the colorimetric detection of hydroquinone is developed with a low detection limit of 0.42 µM. This research provides a new strategy to design hollow materials with high peroxidase-mimicking activity.

5.
Mikrochim Acta ; 190(10): 413, 2023 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-37740757

RESUMEN

A stable and innovative composite film-modified electrode based on Dawson polyoxometalates H8P2Mo16V2O62 (P2Mo16V2) and ionic liquid (BMIMBr)-decorated carbon nanotubes, annotated as PEI/(P2Mo16V2/BMIMBr-CNTs)8, has been constructed by using the layer-by-layer self-assembly (LBL) method for the determination of L-tyrosine. The combination of three active components not only offers higher conductivity to facilitate rapid electron transfer, but also avoids the accumulation of P2Mo16V2 to expand the contact area and increase the reactive active sites. The modified electrode exhibits outstanding sensing performance for determination of Tyr with wide linear determination range of 5.8×10-7 M ~ 1.2×10-4 M, low determination limit of 1.7×10-7M (S/N=3), high selectivity for common interferences, and excellent stability at the potential of +0.78 V (vs. Ag/AgCl (3 M KCl)). The relative standard deviation (RSD) of 4.3% for five groups of parallel experiments shows the satisfactory repeatability of PEI/(P2Mo16V2/BMIMBr-CNTs)8. In addition, for determination of Tyr, the PEI/(P2Mo16V2/BMIMBr-CNTs)8 shows good recoveries of 98.8-99.8% in meat floss, which can be feasible in practical application.


Asunto(s)
Líquidos Iónicos , Nanotubos de Carbono , Tirosina , Electrodos
6.
Dalton Trans ; 52(31): 10718-10724, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37490299

RESUMEN

The hydrogen evolution reaction (HER) is important for "green" hydrogen production from water electrolysis. Nowadays, there is an urgent need to construct highly efficient electrocatalysts to boost the HER and achieve hydrogen production. Herein, we present the preparation of a new composite Co-Mo bimetallic sulfide supported on carbon cloth (MoS2/CoS2/CC) via a one-pot hydrothermal sulfurization strategy using (C3H5N2)6[CoMo12O40]·10H2O (CoMo12) as a metal source and thiourea as a sulfur source. The obtained MoS2/CoS2/CC catalyst exhibited outstanding HER ability, with an overpotential of 69 mV when the current density is 10 mA cm-2 in KOH solution, showing comparable performance with those of the advanced Pt/C electrodes tested under the same conditions. Additionally, the results of XRD after the catalytic reaction showed that the electrode had excellent stability in the electrolyte of 1.0 M KOH.

7.
ACS Appl Mater Interfaces ; 15(29): 35611-35621, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37450308

RESUMEN

The development of photocatalysts toward highly efficient H2 evolution reactions is a feasible strategy to achieve the effective conversion of solar energy and meet the increasing demand for new energy. To this end, we prepared two different CdS-MoS2 photocatalysts with unique morphologies ranging from hexagonal prisms to tetragonal nanotubes by carefully tuning polyoxometalate synthons. These two photocatalysts, namely, CdS-MoS2-1 and CdS-MoS2-2, both exhibited remarkable photocatalytic efficiency in H2 generation, among which CdS-MoS2-2 showed superior performance. In fact, the best catalytic hydrogen desorption rate of CdS-MoS2-2 is as high as 1815.5 µmol g-1 h-1. Such performance is superior to twice that of single CdS and almost four times that of pure MoS2. This obvious enhancement can be accredited to the highly open nanotube morphology and highly dispersed heterometallic composition of CdS-MoS2-2, which represents an excellent example of the highest noble-metal-free H2 evolution photocatalysts reported so far. Taken together, these findings suggest that the development of highly dispersed heterometallic catalysts is an auspicious route to realize highly efficient conversion of solar energy and that CdS-MoS2-2 represents a major advance in this field.

8.
Mikrochim Acta ; 190(1): 24, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36515741

RESUMEN

A promising sensing platform based on polyoxometalate-based metal-organic framework (POMOF) was established for sensitive electrochemical detection of xanthine (XA). In the unique structure of POMOF, the Dawson polyoxoanions P2W18 were encapsulated into 3D open copper-mixed ligand nanotube framework Cu-MOF, in which the cavity of the metal-organic framework provides a specific shelter to prevent the aggregation and loss of polyoxometalate in electrocatalytic reactions; meanwhile, unsaturated Cu(II) active sites of Cu-MOF can also serve as electrocatalytic active center. The POMOF-based sensor (CuMOFP2W18/XC-72R) was fabricated by using acetylene black (XC-72R) as a support material to enhance the conductivity of POMOF. The performances of the POMOF-based sensor were studied by using different electrochemical testing methods. The composite displayed remarkable electrocatalytic activity for the oxidation of XA due to the synergistic effect of polyoxometalate (POM) and metal-organic framework (MOF). The electrochemical sensor demonstrated a wide linear range (0.5 µM-240 µM), low detection limit (0.26 µM), and excellent selectivity for detecting XA. Furthermore, the composite further demonstrated excellent reproducibility and great stability. More importantly, the proposed sensor was utilized to detect XA in real samples, which may provide a new way for early disease diagnosis.


Asunto(s)
Estructuras Metalorgánicas , Estructuras Metalorgánicas/química , Xantina , Reproducibilidad de los Resultados , Técnicas Electroquímicas
9.
Molecules ; 27(23)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36500261

RESUMEN

High-energy density supercapacitors have attracted extensive attention due to their electrode structure design. A synergistic effect related to core-shell structure can improve the energy storage capacity and power density of electrode materials. The Ni-foam (NF) substrate coupled with polypyrrole (PPy) conductive coating can serve as an internal/external bicontinuous conductive network. In this work, the distinctive PPy@FeNi2S4@NF and PPy@NiCo2S4@NF materials were prepared by a simple two-step hydrothermal synthesis with a subsequent in situ polymerization method. PPy@FeNi2S4@NF and PPy@NiCo2S4@NF could deliver ultrahigh specific capacitances of 3870.3 and 5771.4 F·g-1 at 1 A·g-1 and marvelous cycling capability performances of 81.39% and 93.02% after 5000 cycles. The asymmetric supercapacitors composed of the prepared materials provided a high-energy density of over 47.2 Wh·kg-1 at 699.9 W·kg-1 power density and 67.11 Wh·kg-1 at 800 W·kg-1 power density. Therefore, the self-assembled core-shell structure can effectively improve the electrochemical performance and will have an effective service in advanced energy-storage devices.


Asunto(s)
Polímeros , Pirroles , Conductividad Eléctrica , Capacidad Eléctrica , Electrodos
10.
Inorg Chem ; 61(40): 16055-16063, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36173134

RESUMEN

Phenols are widely used for commercial production, while they pose a hazard to the environment and human health. Thus, investigation of convenient and efficient methods for the detection, discrimination, and degradation of phenols becomes particularly important. Herein, two new polyoxometalate (POM)-based compounds, [Co2(btap)4(H2O)4][SiW12O40] (Co-POM) and [Ni2(btap)4(H2O)4][SiW12O40] (Ni-POM) (btap = 3,5-bis(triazol-1-yl)pyridine), are prepared via a hydrothermal synthesis method. The compounds show a fascinating structural feature of a POM-encapsulated twofold interpenetrating dia metal-organic framework. More importantly, besides the novel structures, the compound Co-POM realizes three functions, namely, the simultaneous detection, discrimination, and degradation of phenols. Specifically, Co-POM shows an excellent colorimetric detection performance toward phenol with a detection limit (LOD) ca. 1.32 µM, which is lower than most reported colorimetric detectors for phenol. Also, a new colorimetric sensor system based on Co-POM can discriminate phenol, 4-chlorophenol, and o-cresol with ease. Further, Co-POM exhibits a photocatalytic degradation property for 4-chlorophenol under irradiation of visible light with the highest degradation rate at 62% after irradiation for 5 h. Therefore, this work provides the first example of a POMs-based multifunctional material for achieving the detection, discrimination, and degradation of phenolic pollutants.


Asunto(s)
Contaminantes Ambientales , Estructuras Metalorgánicas , Compuestos de Tungsteno , Aniones , Dióxido de Carbono , Clorofenoles , Humanos , Fenol , Fenoles , Polielectrolitos , Piridinas , Compuestos de Tungsteno/química
11.
Inorg Chem ; 61(30): 11830-11836, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35852958

RESUMEN

In situ molecular transformation under hydrothermal conditions is a feasible method to introduce distinct organic ligands and suppress competitive reactions between different synthons. However, this strategy has not yet been explored for the preparation of polyoxometalate (POM)-encapsulated metal-organic frameworks (MOFs). In this work, we designed and prepared a new compound, [Co2(3,3'-bpy)(3,5'-bpp)(4,3'-bpy)](H2O)3[SiW12O40] (1) (4,3'-bpy = 4,3'-dipyridine, 3,5'-bpp = 3,5'-bis(pyrid-4-yl)pyridine, and 3,3'-bpy = 3,3'-bis(pyrid-4-yl) dipyridine), via an in situ ligand synthesis route. The compound shows a novel POM-encapsulated MOF structure with two pairs of left- and right-handed double helixes. These left- and right-handed helical chains further lead to triangular and rhombus-like channels, respectively. Moreover, the as-synthesized title compound shows superior electrocatalytic activity toward the hydrogen evolution reaction (HER) in 1 M KOH aqueous solution with a low overpotential and Tafel slope of 92 mV and 92.1 mV dec-1, respectively, under a current density of 10 cm-2. Also, the compound exhibits a high activity for the photocatalytic degradation of the dye rhodamine B. The excellent performance of the compound may be attributed to the synergistic effect between W and Co elements and the presence of encapsulated POMs. The title compound proves that it is possible to prepare multifunctional MOFs with POMs and transition metals showing HER activity and dye degradation activity.

12.
Small ; 18(29): e2202087, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35729064

RESUMEN

To develop high-performance supercapacitors, the negative electrode is at present viewed as one of the most challenging tasks for obtaining the next-generation of energy storage devices. Therefore, in this study, a polyoxometalate-based coordination polymer [Zn(itmb)3 H2 O][H2 SiW12 O40 ]·5H2 O (1) is designed and prepared by a simple hydrothermal method for constructing a high-capacity negative electrode. Polymer 1 has two water-assisted proton channels, which are conducive to enhancing the electrical conductivity and storage capacity. Then, MXene Ti3 C2 Tx is chosen to accommodate coordination polymer 1 as the interlayer spacers to improve the conductivity and cycling stability of 1, while preventing the restacking of MXene. Expectedly, the produced composite electrode 1@Ti3 C2 Tx shows an excellent specific capacitance (1480.1 F g-1 at 5 A g-1 ) and high rate performance (a capacity retention of 71.5% from 5 to 20 A g-1 ). Consequently, an asymmetric supercapacitor device is fabricated using 1@Ti3 C2 Tx as the negative electrode and celtuce leaves-derived carbon paper as the positive electrode, which demonstrates ultrahigh energy density of 32.2 Wh kg-1 , and power density 2397.5 W kg-1 , respectively. In addition, the ability to illuminate a red light-emitting diode for several minutes validates its feasibility for practical application.

13.
Environ Sci Pollut Res Int ; 29(36): 54219-54233, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35292900

RESUMEN

As a critical air dissolving system, the performance of air flotation equipment directly determines the adhesion efficiency and pollutant removal efficiency of air flotation processes. The factors affecting the performance of air flotation equipment and the relationships between equipment performance and pollution removal efficiency were studied. The results show that when the dissolved gas pressure was 0.4 MPa and the air intake rate was 24 mL/min, the dissolved gas efficiency of the equipment reached its highest value of 55%, the average particle size of bubbles was maintained at 24 µm, and the dissolved oxygen (DO) content significantly increased. When the dissolved gas pressure was 0.4 MPa, the air intake rate was 24 mL/min, and the coagulant dose was 6 mg/L; the removal rates for turbidity, chlorophyll-a, total organic carbon (TOC), and UV absorbance at 254 nm (UV254) reached 95.76%, 96.41%, 34.21%, and 65.96%, respectively. The degree of pollutant removal was positively correlated with changes to the equipment performance parameters. Microbubbles (MBs) showed good removal of high-molecular weight, strongly hydrophobic organic matter and showed some removal of the trihalomethane formation potential (THMFP) of the water. The removal mechanism mainly depended on the hydrophobic interactions of the MBs with algae and organic matter. The flocs and MBs collided and adhered to form air-entrained flocs. The separation of air-entrained flocs depended on the relationship between the surface load and the rising velocity. The surface load has to be lower than the rising velocity of the minimum air-entrained flocs to ensure good effluent outcomes.


Asunto(s)
Contaminantes Ambientales , Purificación del Agua , Clorofila A , Floculación , Microburbujas , Tamaño de la Partícula , Purificación del Agua/métodos
14.
J Colloid Interface Sci ; 609: 815-824, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34839922

RESUMEN

Electrochemical nitrogen reduction reaction (NRR) has been identified as a prospective alternative for sustainable ammonia production. Developing cost-effective and highly efficient electrocatalysts is critical for NRR under ambient conditions. Herein, the hierarchical cobalt-molybdenum bimetallic sulfide (CoS2/MoS2) flower-like heterostructure assembled from well-aligned nanosheets has been easily fabricated through a one-step strategy. The efficient synergy between different components and the formation of heterostructure in CoS2/MoS2 nanosheets with abundant active sites makes the non-noble metal catalyst CoS2/MoS2 highly effective in NRR, with a high NH3 yield rate (38.61 µg h-1 mgcat.-1), Faradaic efficiency (34.66%), high selectivity (no formation of hydrazine) and excellent long-term stability in 1.0 mol L-1 K2SO4 electrolyte (pH = 3.5) at -0.25 V versus the reversible hydrogen electrode (vs. RHE) under ambient conditions, exceeding much recently reported cobalt- and molybdenum-based materials, even catch up with some noble-metal-based catalyst. Density functional theory (DFT) calculation indicates that the formation of N2H* species on CoS2(200)/MoS2(002) is the rate-determining step via both the alternating and distal pathways with the maximum ΔG values (1.35 eV). These results open up opportunities for the development of efficient non-precious bimetal-based catalysts for NRR.

15.
ACS Appl Mater Interfaces ; 13(46): 55040-55050, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34751553

RESUMEN

Highly efficient catalysts with enough selectivity and stability are essential for electrochemical nitrogen reduction reaction (e-NRR) that has been considered as a green and sustainable route for synthesis of NH3. In this work, a series of three-dimensional (3D) porous iron foam (abbreviated as IF) self-supported FeS2-MoS2 bimetallic hybrid materials, denoted as FeS2-MoS2@IFx, x = 100, 200, 300, and 400, were designed and synthesized and then directly used as the electrode for the NRR. Interestingly, the IF serving as a slow-releasing iron source together with polyoxomolybdates (NH4)6Mo7O24·4H2O as a Mo source were sulfurized in the presence of thiourea to form self-supported FeS2-MoS2 on IF (abbreviated as FeS2-MoS2@IF200) as an efficient electrocatalyst. Further material characterizations of FeS2-MoS2@IF200 show that flower cluster-like FeS2-MoS2 grows on the 3D skeleton of IF, consisting of interconnected and staggered nanosheets with mesoporous structures. The unique 3D porous structure of FeS2-MoS2@IF together with synergy and interface interactions of bimetallic sulfides would make FeS2-MoS2@IF possess favorable electron transfer tunnels and expose abundant intrinsic active sites in the e-NRR. It is confirmed that synthesized FeS2-MoS2@IF200 shows a remarkable NH3 production rate of 7.1 ×10-10 mol s-1 cm-2 at -0.5 V versus the reversible hydrogen electrode (vs RHE) and an optimal faradaic efficiency of 4.6% at -0.3 V (vs RHE) with outstanding electrochemical and structural stability.

16.
Front Endocrinol (Lausanne) ; 12: 726876, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34489871

RESUMEN

Background: Uterine leiomyomata (UL) and endometriosis (EM) are common gynecological diseases damaging the reproductive health of fertile women. Among all the potential factors, environmental endocrine-disrupting chemicals are insufficiently addressed considering the multiple pollutants and mixture exposure. Methods: Women aged 20 to 54 years old in the National Health and Nutrition Examination Survey (NHANES) 2001-2006, having a complete measurement of ten commonly exposed endocrine-disrupting chemicals (including urinary phthalate metabolites, equol, and whole blood heavy metals) and answered questions about UL and EM were included (N=1204). Multivariable logistic regression model, weighted quantile sum (WQS) regression, and Bayesian kernel machine regression (BKMR) models were implemented to analyze the combined effect of chemicals on the overall association with UL and EM. Results: In single chemical analysis, equol (OR: 1.90, 95% CI: 1.11, 3.27) and mercury (Hg) (OR: 1.91, 95% CI: 1.14, 3.25) were found positively associated with UL in tertile 3 vs. tertile 1. In WQS regression and BKMR models, the significant positive association between WQS index and UL (OR: 2.54, 95% CI: 1.52, 4.29) was identified and the positive relationship between equol and Hg exposure and UL were further verified. Besides, the mixture evaluation models (WQS and BKMR) also found MEHP negatively associated with UL. Although none of the single chemicals in tertile 3 were significantly associated with EM, the WQS index had a marginally positive association with EM (OR: 2.01, 95% CI: 0.98, 4.15), and a significant positive association was identified in subanalysis with participants restricted to premenopausal women (OR: 2.18, 95% CI: 1.03, 4.70). MIBP and MBzP weighted high in model of EM and MEHP weighted the lowest. Conclusion: Comparing results from these three statistical models, the associations between equol, Hg, and MEHP exposure with UL as well as the associations of MIBP, MBzP, and MEHP exposure with EM warrant further research.


Asunto(s)
Disruptores Endocrinos/efectos adversos , Endometriosis/patología , Exposición a Riesgos Ambientales/efectos adversos , Leiomioma/patología , Modelos Estadísticos , Encuestas Nutricionales/estadística & datos numéricos , Neoplasias Uterinas/patología , Adulto , Teorema de Bayes , Estudios Transversales , Endometriosis/inducido químicamente , Endometriosis/epidemiología , Femenino , Estudios de Seguimiento , Humanos , Leiomioma/inducido químicamente , Leiomioma/epidemiología , Persona de Mediana Edad , Pronóstico , Estados Unidos/epidemiología , Neoplasias Uterinas/inducido químicamente , Neoplasias Uterinas/epidemiología , Adulto Joven
17.
Chemistry ; 27(32): 8337-8343, 2021 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-33847024

RESUMEN

Oxygen defects and hollow structures positively impact pseudocapacitive properties of diffusion/surface-controlled processes, a component of critical importance when building high-performance supercapacitors. Hence, we fabricated hollow nickel/cobalt molybdate rods with O-defects (D-H-NiMoO4 @CoMoO4 ) through a soft-template and partial reduction method, enhancing D-H-NiMoO4 @CoMoO4 's electrochemical performance, yielding a specific capacitance of 1329 F g-1 , and demonstrating excellent durability with 95.8 % capacity retention after 3000 cycles. D-H-NiMoO4 @CoMoO4 was used as the positive electrode to construct an asymmetric supercapacitor, displaying an energy density of up to 34.13 Wh kg-1 and demonstrating good predisposition towards practical applications. This work presents an effective approach to fabricate and use hollow nickel/cobalt molybdate rods with O-defects as pseudocapacitor material for high-performance capacitive energy storage devices.

18.
J Colloid Interface Sci ; 598: 181-192, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-33901845

RESUMEN

An innovative electrochemical nanocomposite for the detection of guanosine (Gua) was proposed by in situ encapsulation of nickel-iron bimetallic selenides confined into honeycomb-like nitrogen doped porous carbon nanosheets, denoted as (Ni,Fe)Se2/N-PCNs. The porous carbon nanosheets were prepared by utilizing nickel-iron layered double hydroxide (Ni-Fe LDH) as the substrate and zeolitic imidazolate frameworks (ZIF-67) nanocrystals as the sacrificial templates via hydrothermal synthesis, followed by a process of acid etching and pyrolysis selenylation. Interestingly, the nickel-ferric bimetallic selenides material (Ni,Fe)Se2, is rarely fabricated successfully using selenylation treatment, which is a highly conductive and robust support to promote the electron transport. Meanwhile, the obtained (Ni,Fe)Se2/N-PCNs have the favorable architectural features of both unique three-dimensional (3D) porous structural and hierarchical connectivity, which are expected to provide more active sites for electrochemical reactions and ease of electron, ion, and biomolecule penetration. Benefiting from the inherent virtues of its composition, together with unique structural advantages, the (Ni,Fe)Se2/N-PCNs possess ideal sensing properties for guanosine detection with a low detection limit of 1.20 × 10-8 M, a wide linear range of 5.30 × 10-8 ~ 2.27 × 10-4 M and a good stability. Superb selectivity for potential interfering species and superb recoveries in serum suggests its feasibility for practical applications.


Asunto(s)
Carbono , Nitrógeno , Guanosina , Hierro , Porosidad
19.
Angew Chem Int Ed Engl ; 60(18): 10147-10154, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33511739

RESUMEN

Multidimensional fabrication of metal-organic frameworks (MOFs) into multilevel channel integrated devices are in high demanded for Li-S separators. Such separators have advantages in pore-engineering that might fulfill requirements such as intercepting the diffusing polysulfides and improving the Li+ /electrolyte transfer in Li-S batteries. However, most reported works focus on the roles of MOFs as ionic sieves for polysulfides while offering limited investigation on the tuning of Li+ transfer across the separators. A photoinduced heat-assisted processing strategy is proposed to fabricate MOFs into multidimensional devices (e.g., hollow/Janus fibers, double-or triple-layer membranes). For the first time, a triple-layer separator with stepped-channels has been designed and demonstrated as a powerful separator with outstanding specific capacity (1365.0 mAh g-1 ) and cycling performance (0.03 % fading per cycle from 100th to 700th cycle), which is superior to single/double-layer and commercial separators. The findings may expedite the development of MOF-based membranes and extend the scope of MOFs in energy-storage technologies.

20.
Adv Sci (Weinh) ; 7(24): 2002190, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33344128

RESUMEN

Metal-organic framework (MOF) based mixed matrix membranes (MMMs) have received significant attention in applications such as gas separation, sensing, and energy storage. However, the mass production of MOF-based MMMs with retained porosity remains a longstanding challenge. Herein, an in situ heat-assisted solvent-evaporation method is described to facilely produce MOF-based MMMs. This method can be extended into various MOFs and polymers with minimum reaction time of 5 min. Thus-obtained MMMs with high uniformity, excellent robustness, well-tuned loading, and thickness can be massively produced in industrial-level efficiency (≈4 m in a batch experiment). Furthermore, they can be readily applied as powerful separators for Li-S cell with high specific capacity (1163.7 mAh g-1) and a capacity retention of 500.7 mAh g-1 after 700 cycles at 0.5 C (0.08% fading per cycle). This work may overcome the longstanding challenge of processing MOFs into MMMs and largely facilitate the industrialization process of MOFs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...