Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Physiol ; 14: 1294741, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38089476

RESUMEN

Advances in next-generation sequencing have been exceptionally valuable for identifying variants in medically actionable genes. However, for most missense variants there is insufficient evidence to permit definitive classification of variants as benign or pathogenic. To overcome the deluge of Variants of Uncertain Significance, there is an urgent need for high throughput functional assays to assist with the classification of variants. Advances in parallel planar patch clamp technologies has enabled the development of automated high throughput platforms capable of increasing throughput 10- to 100-fold compared to manual patch clamp methods. Automated patch clamp electrophysiology is poised to revolutionize the field of functional genomics for inheritable cardiac ion channelopathies. In this review, we outline i) the evolution of patch clamping, ii) the development of high-throughput automated patch clamp assays to assess cardiac ion channel variants, iii) clinical application of these assays and iv) where the field is heading.

2.
medRxiv ; 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38196587

RESUMEN

Brugada Syndrome (BrS) is an inheritable arrhythmia condition that is associated with rare, loss-of-function variants in the cardiac sodium channel gene, SCN5A. Interpreting the pathogenicity of SCN5A missense variants is challenging and ~79% of SCN5A missense variants in ClinVar are currently classified as Variants of Uncertain Significance (VUS). An in vitro SCN5A-BrS automated patch clamp assay was generated for high-throughput functional studies of NaV1.5. The assay was independently studied at two separate research sites - Vanderbilt University Medical Center and Victor Chang Cardiac Research Institute - revealing strong correlations, including peak INa density (R2=0.86). The assay was calibrated according to ClinGen Sequence Variant Interpretation recommendations using high-confidence variant controls (n=49). Normal and abnormal ranges of function were established based on the distribution of benign variant assay results. The assay accurately distinguished benign controls (24/25) from pathogenic controls (23/24). Odds of Pathogenicity values derived from the experimental results yielded 0.042 for normal function (BS3 criterion) and 24.0 for abnormal function (PS3 criterion), resulting in up to strong evidence for both ACMG criteria. The calibrated assay was then used to study SCN5A VUS observed in four families with BrS and other arrhythmia phenotypes associated with SCN5A loss-of-function. The assay revealed loss-of-function for three of four variants, enabling reclassification to likely pathogenic. This validated APC assay provides clinical-grade functional evidence for the reclassification of current VUS and will aid future SCN5A-BrS variant classification.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...