Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 129(24): 242502, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36563237

RESUMEN

ß decay of proton-rich nuclei plays an important role in exploring isospin mixing. The ß decay of ^{26}P at the proton drip line is studied using double-sided silicon strip detectors operating in conjunction with high-purity germanium detectors. The T=2 isobaric analog state (IAS) at 13 055 keV and two new high-lying states at 13 380 and 11 912 keV in ^{26}Si are unambiguously identified through ß-delayed two-proton emission (ß2p). Angular correlations of two protons emitted from ^{26}Si excited states populated by ^{26}P ß decay are measured, which suggests that the two protons are emitted mainly sequentially. We report the first observation of a strongly isospin-mixed doublet that deexcites mainly via two-proton decay. The isospin mixing matrix element between the ^{26}Si IAS and the nearby 13 380-keV state is determined to be 130(21) keV, and this result represents the strongest mixing, highest excitation energy, and largest level spacing of a doublet ever observed in ß-decay experiments.

2.
Nat Commun ; 13(1): 7193, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36424384

RESUMEN

The dynamics of a nuclear open quantum system could be revealed in the correlations between the breakup fragments of halo nuclei. The breakup mechanism of a proton halo nuclear system is of particular interest as the Coulomb polarization may play an important role, which, however, remains an open question. Here we use a highly efficient silicon detector array and measure the correlations between the breakup fragments of 8B incident on 120Sn at near-barrier energies. The energy and angular correlations can be explained by a fully quantum mechanical method based on the state-of-the-art continuum discretized coupled channel calculations. The results indicate that, compared to the neutron halo nucleus 6He, 8B presents distinctive reaction dynamics: the dominance of the elastic breakup. This breakup occurs mainly via the short-lived continuum states, almost exhausts the 7Be yield, indicating the effect of Coulomb polarization on the proton halo state. The correlation information reveals that the prompt breakup mechanism dominates, occurring predominantly on the outgoing trajectory. We also show that, as a large environment, the continuum of 8B breakup may not significantly influence elastic scattering and complete fusion.

3.
Phys Rev Lett ; 125(19): 192503, 2020 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-33216609

RESUMEN

ß-delayed one-proton emissions of ^{22}Si, the lightest nucleus with an isospin projection T_{z}=-3, are studied with a silicon array surrounded by high-purity germanium detectors. Properties of ß-decay branches and the reduced transition probabilities for the transitions to the low-lying states of ^{22}Al are determined. Compared to the mirror ß decay of ^{22}O, the largest value of mirror asymmetry in low-lying states by far, with δ=209(96), is found in the transition to the first 1^{+} excited state. Shell-model calculation with isospin-nonconserving forces, including the T=1, J=2, 3 interaction related to the s_{1/2} orbit that introduces explicitly the isospin-symmetry breaking force and describes the loosely bound nature of the wave functions of the s_{1/2} orbit, can reproduce the observed data well and consistently explain the observation that a large δ value occurs for the first but not for the second 1^{+} excited state of ^{22}Al. Our results, while supporting the proton-halo structure in ^{22}Al, might provide another means to identify halo nuclei.

4.
Phys Rev Lett ; 119(4): 042503, 2017 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-29341746

RESUMEN

The threshold anomaly of the phenomenological potential has been known for a long time in nuclear reactions at energies around the Coulomb barrier, where the connection between the real and imaginary potentials is well described by the dispersion relation. However, this connection is not clear yet for some weakly bound nuclear systems, especially for reactions induced by exotic radioactive nuclei. In this study, precise optical potentials of the halo nuclear system ^{6}He+^{209}Bi were extracted via ^{208}Pb(^{7}Li,^{6}He) transfer reactions with energies measured downward to the extremely sub-barrier region. The real potential presents a bell-like shape around the barrier as a normal threshold anomaly in tightly bound nuclear systems. However, the imaginary potential shows an abnormal behavior: it increases first with energy decreasing below the barrier and then falls quickly down to 0. It is the first time the threshold of the imaginary potential has been determined in an exotic nuclear system. Moreover, experimental results show the dispersion relation is not applicable for this system, which may be a common phenomenon for exotic nuclear systems. We discuss possible explanations for such a peculiar behavior, but further study is still desired for the underlying physics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...