Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Int Immunopharmacol ; 132: 112028, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38593507

RESUMEN

Extracellular vesicles (EVs) derived from Mesenchymal Stromal Cells (MSCs) have shown promising therapeutic potential for multiple diseases, including intervertebral disc degeneration (IDD). Nevertheless, the limited production and unstable quality of EVs hindered the clinical application of EVs in IDD. Selenomethionine (Se-Met), the major form of organic selenium present in the cereal diet, showed various beneficial effects, including antioxidant, immunomodulatory and anti-apoptotic effects. In the current study, Se-Met was employed to treat MSCs to investigate whether Se-Met can facilitate the secretion of EVs by MSCs and optimize their therapeutic effects on IDD. On the one hand, Se-Met promoted the production of EVs by enhancing the autophagy activity of MSCs. On the other hand, Se-Met pretreated MSC-derived EVs (Se-EVs) exhibited an enhanced protective effects on alleviating nucleus pulposus cells (NPCs) senescence and attenuating IDD compared with EVs isolated from control MSCs (C-EVs) in vitro and in vivo. Moreover, we performed a miRNA microarray sequencing analysis on EVs to explore the potential mechanism of the protective effects of EVs. The result indicated that miR-125a-5p is markedly enriched in Se-EVs compared to C-EVs. Further in vitro and in vivo experiments revealed that knockdown of miR-125a-5p in Se-EVs (miRKD-Se-EVs) impeded the protective effects of Se-EVs, while overexpression of miR-125a-5p (miROE-Se-EVs) boosted the protective effects. In conclusion, Se-Met facilitated the MSC-derived EVs production and increased miR-125a-5p delivery in Se-EVs, thereby improving the protective effects of MSC-derived EVs on alleviating NPCs senescence and attenuating IDD.


Asunto(s)
Vesículas Extracelulares , Degeneración del Disco Intervertebral , Células Madre Mesenquimatosas , MicroARNs , Selenometionina , Degeneración del Disco Intervertebral/terapia , Degeneración del Disco Intervertebral/metabolismo , Células Madre Mesenquimatosas/metabolismo , Vesículas Extracelulares/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Animales , Selenometionina/farmacología , Humanos , Núcleo Pulposo/metabolismo , Células Cultivadas , Masculino , Senescencia Celular , Trasplante de Células Madre Mesenquimatosas , Autofagia , Ratas Sprague-Dawley , Ratas
2.
J Cell Biochem ; 125(6): e30568, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38616655

RESUMEN

This study aimed to explore the effects of peroxisome proliferator-activated receptor γ (PPARγ) inhibition on fracture healing of nonunion and the underlying mechanisms. Bone marrow mesenchymal stem cells (BMSCs) were treated with PPARγ antagonist GW9662 (5 µM, 10 µM). Alkaline phosphatase (ALP) staining and Alizarin Red S was used to assess early stage of osteogenesis and osteogenic differentiation. GW9662 (1 mg/kg/day) were administered intraperitoneally into the rats with bone fracture. Bone healing processes in the rat femur fracture model were recorded and assessed by radiographic methods on Weeks 8, 14, and 20 postoperation. Osteogenesis and angiogenesis at the fracture sites were evaluated by radiographic and histological methods on postoperative Week 20. GW9662 treatment increased ALP activity and Alp mRNA expression in rat BMSCs. Moreover, GW9662 administration increased matrix mineralization and mRNA and protein levels of Bmp2 and Runx2 in the BMSCs. In addition, GW9662 treatment improved radiographic score in the fracture rats and increased osteogenesis-related proteins, including type I collagen, osteopontin, and osteoglycin, in the bone tissues of the fracture sites. In conclusion, PPARγ inhibition promotes osteogenic differentiation of rat BMSCs, as well as improves the fracture healing of rats through Bmp2/Runx2 signaling pathway in the rat model of bone fracture.


Asunto(s)
Anilidas , Diferenciación Celular , Curación de Fractura , Células Madre Mesenquimatosas , Osteogénesis , PPAR gamma , Ratas Sprague-Dawley , Animales , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Osteogénesis/efectos de los fármacos , PPAR gamma/metabolismo , Curación de Fractura/efectos de los fármacos , Ratas , Diferenciación Celular/efectos de los fármacos , Anilidas/farmacología , Masculino , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Proteína Morfogenética Ósea 2
3.
AAPS J ; 25(5): 90, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37715005

RESUMEN

Process analytical technology (PAT) in late-stage drug product development is typically used for real-time process monitoring, in-process control, and real-time release testing. In early research and development (R&D), PAT usage is limited as the manufacturing scale is relatively small with frequent changes and only a few batches are produced on an annual basis. However, process understanding is critical at early R&D in order to identify process and formulation boundaries, so PAT applications could be particularly useful in early-stage R&D. For oral solid dosage form, conventional HPLC-based content uniformity (CU) methods with sampling of 3 tablets per stratified sampling location in early R&D are typically not sufficient to identify these manufacturing process boundaries and temporal profile. Here, we report a screening CU method based on a multivariate model using transmission Raman spectroscopy (TRS) data on a phase-appropriate calibration set of only 16 tablets. This initial model was used for multiple pre-GMP development batches to provide critical information about blend uniformity and content uniformity (CU). In this work, the precision of the TRS method was evaluated; multiple spectral preprocessing approaches were compared regarding their effects on measurement precision as well as their ability to mitigate the photo bleaching effects during precision experiments. Overall, the TRS-based CU method was much faster than a traditional HPLC-based method allowing a much larger number of tablets to be screened. This larger number of analyzed tablets enabled the processes boundaries and temporal changes in CU to be identified while providing proper statistical assurance on product quality.


Asunto(s)
Desarrollo de Medicamentos , Proyectos de Investigación , Calibración , Cromatografía Líquida de Alta Presión , Tecnología
4.
Nat Commun ; 14(1): 4612, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37553361

RESUMEN

Earthquakes often occur along faults in the presence of hot, pressurized water. Here we exploit a new experimental device to study friction in gabbro faults with water in vapor, liquid and supercritical states (water temperature and pressure up to 400 °C and 30 MPa, respectively). The experimental faults are sheared over slip velocities from 1 µm/s to 100 mm/s and slip distances up to 3 m (seismic deformation conditions). Here, we show with water in the vapor state, fault friction decreases with increasing slip distance and velocity. However, when water is in the liquid or supercritical state, friction decreases with slip distance, regardless of slip velocity. We propose that the formation of weak minerals, the chemical bonding properties of water and (elasto)hydrodynamic lubrication may explain the weakening behavior of the experimental faults. In nature, the transition of water from liquid or supercritical to vapor state can cause an abrupt increase in fault friction that can stop or delay the nucleation phase of an earthquake.

5.
Mol Med Rep ; 28(1)2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37203399

RESUMEN

In the field of orthopedics, defects in large bones have proven challenging to resolve. The aim of the present study was to address this problem through the combination of tantalum metal (pTa) with exosomes derived from bone marrow mesenchymal stem cells (BMSCs), which have the potential to enhance regeneration of full thickness femoral bone defects in rats. Cell culture results demonstrated that exosomes improved the proliferation and differentiation of BMSCs. Following establishment of a supracondylar femoral bone defect, exosomes and pTa were implanted into the defect area. Results demonstrated that pTa acts as a core scaffold for cell adhesion and exhibits good biocompatibility. Moreover, micro­CT scan results as well as histological examination demonstrated that pTa had a significant effect on osteogenesis, with the addition of exosomes further promoting bone tissue regeneration and repair. In conclusion, this novel composite scaffold can effectively promote bone regeneration in large bone defect areas, providing a new approach for the treatment of large bone defects.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , Ratas , Animales , Tantalio/metabolismo , Tantalio/farmacología , Porosidad , Exosomas/metabolismo , Osteogénesis , Regeneración Ósea , Fémur , Células Madre Mesenquimatosas/metabolismo , Andamios del Tejido , Diferenciación Celular , Ingeniería de Tejidos/métodos
6.
Nat Commun ; 14(1): 1136, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36890136

RESUMEN

Earthquakes occur because faults weaken with increasing slip and slip rate. Thermal pressurization (TP) of trapped pore fluids is deemed to be a widespread coseismic fault weakening mechanism. Yet, due to technical challenges, experimental evidence of TP is limited. Here, by exploiting a novel experimental configuration, we simulate seismic slip pulses (slip rate 2.0 m/s) on dolerite-built faults under pore fluid pressures up to 25 MPa. We measure transient sharp weakening, down to almost zero friction and concurrent with a spike in pore fluid pressure, which interrupts the exponential-decay slip weakening. The interpretation of mechanical and microstructural data plus numerical modeling suggests that wear and local melting processes in experimental faults generate ultra-fine materials to seal the pressurized pore water, causing transient TP spikes. Our work suggests that, with wear-induced sealing, TP may also occur in relatively permeable faults and could be quite common in nature.

7.
BMC Infect Dis ; 23(1): 42, 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36690957

RESUMEN

BACKGROUND: Coronavirus disease 2019 is a type of acute infectious pneumonia and frequently confused with influenza since the initial symptoms. When the virus colonized the patient's mouth, it will cause changes of the oral microenvironment. However, few studies on the alterations of metabolism of the oral microenvironment affected by SARS-CoV-2 infection have been reported. In this study, we explored metabolic alterations of oral microenvironment after SARS-CoV-2 infection. METHODS: Untargeted metabolomics (UPLC-MS) was used to investigate the metabolic changes between oral secretion samples of 25 COVID-19 and 30 control participants. To obtain the specific metabolic changes of COVID-19, we selected 25 influenza patients to exclude the metabolic changes caused by the stress response of the immune system to the virus. Multivariate analysis (PCA and PLS-DA plots) and univariate analysis (students' t-test) were used to compare the differences between COVID-19 patients and the controls. Online hiplot tool was used to perform heatmap analysis. Metabolic pathway analysis was conducted by using the MetaboAnalyst 5.0 web application. RESULTS: PLS-DA plots showed significant separation of COVID-19 patients and the controls. A total of 45 differential metabolites between COVID-19 and control group were identified. Among them, 35 metabolites were defined as SARS-CoV-2 specific differential metabolites. Especially, the levels of cis-5,8,11,14,17-eicosapentaenoic acid and hexanoic acid changed dramatically based on the FC values. Pathway enrichment found the most significant pathways were tyrosine-related metabolism. Further, we found 10 differential metabolites caused by the virus indicating the body's metabolism changes after viral stimulation. Moreover, adenine and adenosine were defined as influenza virus-specific differential metabolites. CONCLUSIONS: This study revealed that 35 metabolites and tyrosine-related metabolism pathways were significantly changed after SARS-CoV-2 infection. The metabolic alterations of oral microenvironment in COVID-19 provided new insights into its molecular mechanisms for research and prognostic treatment.


Asunto(s)
COVID-19 , Gripe Humana , Humanos , SARS-CoV-2 , Cromatografía Liquida , Espectrometría de Masas en Tándem , Tirosina
8.
Cancer Manag Res ; 14: 3037-3046, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275784

RESUMEN

Purpose: To observe the efficacy and safety of anlotinib as a first-line treatment for patients with advanced hepatocellular carcinoma (aHCC) in a real-word environment, explore the optimal treatment regimen for patients with aHCC using anlotinib as a first-line treatment. Patients and Methods: Data from 62 patients with aHCC who received anlotinib single-drug first-line therapy between February 2019 and November 2021. Patients received anlotinib monotherapy, which may be interrupted or discontinued or changed in the event of unacceptable or severe adverse events (AEs) or failure to inhibit tumor progression. The primary endpoint was progression-free survival (PFS) and the secondary endpoints were objective response rate(ORR), disease control rate (DCR), overall survival (OS), and safety. Results: Among the 62 patients, in the best overall response assessment, there were 12 with complete response (CR; 19.4%), 17 with partial response (PR; 27.4%), 25 with stable disease (SD; 40.3%), and 8 with progressive disease (PD; 14.5%). The ORR and DCR were 46.8% and 87.1%, respectively. Among the 11 patients who received tyrosine kinase inhibitors (TKIs) combined with programmed death 1 (PD-1) inhibitors after disease progression, three (27.3%) had CR, one (9.1%) had PR, three (27.3%) had SD, and four (36.4%) had PD. Therefore, the ORR and DCR were 36.4% and 63.6%, respectively. The median PFS for anlotinib monotherapy was 7.37 months (95% confidence interval [CI]: 5.88-8.86) and the median OS did not reach. AEs occurred in 95.2% of patients during anlotinib monotherapy, with the most common being thrombocytopenia (51.6%). The incidence of grade ≥3 AEs was 38.7%. Conclusion: Anlotinib is effective and well-tolerated as a first-line treatment for patients with aHCC. Treatment with TKIs and PD-1 inhibitors after disease progression has also shown preliminary efficacy and safety; therefore, sequential therapy with anlotinib-TKIs and PD-1 inhibitors may be an effective treatment for patients with aHCC.

9.
Anal Chem ; 94(25): 9081-9090, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35700415

RESUMEN

Lipid nanoparticles (LNPs) are the most widely investigated delivery systems for nucleic acid-based therapeutics and vaccines. Loading efficiency of nucleic acids may vary with formulation conditions, and it is considered one of the critical quality attributes of LNP products. Current analytical methods for quantification of cargo loading in LNPs often require external standard preparations and preseparation of unloaded nucleic acids from LNPs; therefore, they are subject to tedious and lengthy procedures, LNP stability, and unpredictable recovery rates of the separated analytes. Here, we developed a modeling approach, which was based on locally weighted regression (LWR) of ultraviolet (UV) spectra of unpurified samples, to quantify the loading of nucleic acid cargos in LNPs in-situ. We trained the model to automatically tune the training library space according to the spectral features of a query sample so as to robustly predict the nucleic acid cargo concentration and rank loading capacity with similar performance as the more complicated experimental approaches. Furthermore, we successfully applied the model to a wide range of nucleic acid cargo species, including antisense oligonucleotides, single-guided RNA, and messenger RNA, in varied lipid matrices. The LWR modeling approach significantly saved analytical time and efforts by facile UV scans of 96-well sample plates within a few minutes and with minimal sample preprocessing. Our proof-of-concept study presented the very first data mining and modeling strategy to quantify nucleic acid loading in LNPs and is expected to better serve high-throughput screening workflows, thereby facilitates early-stage optimization and development of LNP formulations.


Asunto(s)
Lípidos , Nanopartículas , Liposomas , ARN Mensajero , ARN Interferente Pequeño/genética , Análisis Espectral
10.
J Pharm Sci ; 111(8): 2172-2179, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35640732

RESUMEN

Physical instability of aqueous drug solutions, such as precipitation upon storage, has so far been difficult to predict or model. Understanding the molecular basis of such phenomena can help mitigate by influencing the product composition and by providing a mechanistic basis of experimental and in silico investigations. In this study, inconsistent precipitation of a model drug, GNE-01 in aqueous solutions was investigated. Chromatographic analyses of the drug solution that showed precipitation upon storage versus the one that did not indicate lack of covalent modification or degradation of the drug, suggesting that the precipitation was a physical phenomenon. Molecular level investigations were conducted using surface tension measurement and nuclear magnetic resonance (NMR) spectroscopy. The studies revealed self-association of the weakly basic drug in solution at slightly acidic pH values which was strengthened by the presence of polyionic excipients. The role of polyionic excipients in facilitating drug precipitation on storage was indicative of shifting solution equilibria in favor of a lower solubility drug-excipient complex. This study highlighted the importance of molecular understanding in mitigating difficult to predict physical instability of self-associating drugs in solution.


Asunto(s)
Excipientes , Agua , Excipientes/química , Solubilidad , Tensión Superficial
11.
J Pharm Biomed Anal ; 213: 114627, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35276506

RESUMEN

While developing a synthetic route for GDC-0326, a PI3Kα selective inhibitor, a side product was identified which was adversely impacting process chemistry development. To aid in optimization of a viable synthetic pathway for the drug, it was decided to characterize this impurity. Initial efforts using typical high-resolution mass spectrometry data coupled with NMR analysis were unable to unambiguously identify the structure. The NMR analysis was hampered by a severe lack of protons in the core of the structure. While efforts were being made to produce suitable crystals for definitive x-ray analysis, Raman analysis was undertaken. The vibrational data were compared to DFT calculations for the two most likely structures. This data, along with chemical reasoning, eventually led to successful prediction of structure 2, which was ultimately confirmed by single crystal x-ray diffractometry data.


Asunto(s)
Benzoxepinas , Contaminación de Medicamentos , Imidazoles , Espectroscopía de Resonancia Magnética/métodos , Espectrometría de Masas
12.
Artículo en Inglés | MEDLINE | ID: mdl-35356241

RESUMEN

Background: Treatment based on syndrome differentiation under the traditional Chinese medicine (TCM) framework has been shown to be helpful in patients with coronary artery disease. We hypothesized that syndrome types could predict the risk of type 2 myocardial infarction (T2MI) caused by imbalance between myocardial oxygen supply and demand in critically ill patients with pulmonary disease. Methods: This retrospective study included consecutive critically ill patients with pulmonary disease admitted to the ICU at Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences from January 1, 2017, to July 1, 2019. Diagnosis of T2MI was based on the fourth universal definition of myocardial infarction. Risk factors associated with T2MI were identified using multivariate regression analysis. Results: A total of 244 patients were included in the study: 78 who developed T2MI and the remaining 166 who did not develop T2MI during hospitalization. The incidence of phlegm syndrome and deficiency syndrome was 61.9% and 38.1%, respectively. In comparison with the patients with phlegm syndrome, the incidence of T2MI in patients with deficiency syndrome is significantly higher (40.9% vs. 26.5%, P=0.019). In multivariate logistic regression, T2MI was independently associated with the baseline troponin level (OR 12.682, 95% CI 1.397∼115.121; P=0.024), hemoglobin < 55 g/L (OR 12.76, 95% CI 2.359∼69.021; P=0.003), mechanical ventilation (OR 2.244, 95% CI 1.029∼4.892; P=0.042), and TCM deficiency syndrome (OR 2.214, 95% CI 1.032∼4.749; P=0.041). After adjusting for confounding factors in Cox regression models, the hazard ratio (95% confidence interval) of qi deficiency syndrome groups was 1.183 (95% CI 1.053∼3.123, P=0.032). Conclusions: Patients with deficiency syndrome are at high risk of T2MI, especially those combined with qi deficiency syndrome.

14.
Geophys Res Lett ; 48(11): e2021GL092417, 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34219831

RESUMEN

Rock materials show dramatic dynamic weakening in large-displacement (m), high-velocity (∼1 m/s) friction experiments, providing a mechanism for the generation of large, natural earthquakes. However, whether such weakening occurs during induced M3-4 earthquakes (dm displacements) is unknown. We performed rotary-shear experiments on simulated fault gouges prepared from the source-, reservoir- and caprock formations present in the seismogenic Groningen gas field (Netherlands). Water-saturated gouges were subjected to a slip pulse reaching a peak circumferential velocity of 1.2-1.7 m/s and total displacements of 13-20 cm, at 2.5-20 MPa normal stress. The results show 22%-81% dynamic weakening within 5-12 cm of slip, depending on normal stress and gouge composition. At 20 MPa normal stress, dynamic weakening from peak friction coefficients of 0.4-0.9 to 0.19-0.27 was observed, probably through thermal pressurization. We infer that similar effects play a key role during induced seismic slip on faults in the Groningen and other reservoir systems.

15.
Signal Transduct Target Ther ; 6(1): 191, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33986253

RESUMEN

COVID-19 remains a serious emerging global health problem, and little is known about the role of oropharynx commensal microbes in infection susceptibility and severity. Here, we present the oropharyngeal microbiota characteristics identified by shotgun metagenomic sequencing analyses of oropharynx swab specimens from 31 COVID-19 patients, 29 influenza B patients, and 28 healthy controls. Our results revealed a distinct oropharyngeal microbiota composition in the COVID-19 patients, characterized by enrichment of opportunistic pathogens such as Veillonella and Megasphaera and depletion of Pseudopropionibacterium, Rothia, and Streptococcus. Based on the relative abundance of the oropharyngeal microbiome, we built a microbial classifier to distinguish COVID-19 patients from flu patients and healthy controls with an AUC of 0.889, in which Veillonella was identified as the most prominent biomarker for COVID-19 group. Several members of the genus Veillonella, especially Veillonella parvula which was highly enriched in the oropharynx of our COVID-19 patients, were also overrepresented in the BALF of COVID-19 patients, indicating that the oral cavity acts as a natural reservoir for pathogens to induce co-infections in the lungs of COVID-19 patients. We also found the increased ratios of Klebsiella sp., Acinetobacter sp., and Serratia sp. were correlated with both disease severity and elevated systemic inflammation markers (neutrophil-lymphocyte ratio, NLR), suggesting that these oropharynx microbiota alterations may impact COVID-19 severity by influencing the inflammatory response. Moreover, the oropharyngeal microbiome of COVID-19 patients exhibited a significant enrichment in amino acid metabolism and xenobiotic biodegradation and metabolism. In addition, all 26 drug classes of antimicrobial resistance genes were detected in the COVID-19 group, and were significantly enriched in critical cases. In conclusion, we found that oropharyngeal microbiota alterations and functional differences were associated with COVID-19 severity.


Asunto(s)
Bacterias , COVID-19/microbiología , Metagenómica , Microbiota , Orofaringe/microbiología , SARS-CoV-2 , Adulto , Bacterias/clasificación , Bacterias/genética , Bacterias/crecimiento & desarrollo , Femenino , Humanos , Masculino , Persona de Mediana Edad
16.
ACS Chem Neurosci ; 12(6): 1031-1038, 2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33621043

RESUMEN

Bradykinin and bradykinin B2 receptors (B2R) play important roles in both the peripheral and central nervous systems. The aim of this study was to explore the changes of bradykinin and B2R in spinal cord ischemic injury (SCII) and whether bradykinin treatment would improve the neurologic function of SCII rats. The rats were divided into the sham group, the SCII group, and three doses of bradykinin (50, 100, 150 µg/kg) groups. The neurologic function was assessed by the Basso, Beattie, and Bresnahan (BBB) score at -1, 1, 3, 5, and 7 days postsurgery. Bradykinin concentration in serum and IL-6, TNF-α, and MCP-1 levels in the spinal cord were detected by ELISA. The mRNA expressions of B2R, IL-6, TNF-α, MCP-1, COX-2, and iNOS in the spinal cord were determined by RT-PCR. The protein expressions of B2R, COX-2, iNOS, p65, and p-p65 were detected by Western blot. Immunohistochemical staining was used to examine B2R expression in the L4-6 segments of the spinal cord. Bradykinin levels in serum and B2R expression in the spinal cord were downregulated in SCII rats. Bradykinin treatment significantly improved the hind limb motor function of SCII rats and increased B2R expression, inhibiting COX-2, iNOS, and p-p65 expression in the spinal cord of SCII rats together with a decrease of the inflammatory mediators of IL-6, TNF-α, and MCP-1 levels. Bradykinin administration activated B2R in the spinal cord of SCII rats, which may improve hind limb locomotor recovery by regulating the NF-κB signaling pathway to inhibit the inflammatory response. These findings may provide a theoretical basis for the clinical application of bradykinin in SCII.


Asunto(s)
Daño por Reperfusión , Traumatismos de la Médula Espinal , Animales , Bradiquinina/farmacología , Ratas , Ratas Sprague-Dawley , Receptor de Bradiquinina B2 , Daño por Reperfusión/tratamiento farmacológico , Médula Espinal , Traumatismos de la Médula Espinal/tratamiento farmacológico
17.
Int J Cancer ; 148(6): 1519-1528, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33152113

RESUMEN

To investigate the clinical value of Tie2-expressing monocytes (TEMs) in the early diagnosis of lung cancer and assess its correlation with angiogenesis, a total of 184 patients with non-small cell lung cancer (NSCLC), 101 patients with benign pulmonary disease (BPD), and 77 healthy controls were enrolled in our study. The distribution of TEMs in lung tissue was determined by immunofluorescence staining. Lung microvascular density was assessed by immunohistochemical staining. Receiver-operating characteristic (ROC) curve analysis was performed to assess the diagnostic value of TEM frequency. Patients with NSCLC were followed up for 26 months. We found that the TEM frequency in peripheral blood monocytes of patients with NSCLC was significantly greater than that in patients with BPD and healthy controls. TEM frequency showed a correlation with NSCLC recurrence. The majority of TEMs in tumor tissues were localized around blood vessels; tumoral TEM frequency showed a positive correlation with microvascular density. High percentage of TEMs in the peripheral blood was associated with poor overall survival. ROC curve analysis revealed the potential diagnostic value of circulating TEM frequency in NSCLC. Thus, we believe that TEM frequency is related to angiogenesis in tumor tissues and may serve as a diagnostic marker for NSCLC.


Asunto(s)
Biomarcadores/análisis , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Neoplasias Pulmonares/diagnóstico , Monocitos/patología , Receptor TIE-2/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Femenino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Neovascularización Patológica/patología
18.
Biomed Pharmacother ; 129: 110475, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32768960

RESUMEN

Damaged lesion remedial is a devastating impediment of diabetes that escorts to noteworthy disease state, predominantly bottom end diseases. Herbal outputs have exposed to be effectual in managing skin abrasions. Kirenol is recognized to encourage angiogenesis, fibroblast propagation, and exposure of cytokines and development factors concerned in wound remedial. The current study is executed to appraise the wound curing action of kirenol in streptozotocin-persusded diabetic rats by macroscopic parameters, histopathological, enzymatic, and biomolecular methods. Proportion of injure disclosure and reduction was augmented in the kirenol managed group. Histopathological examination exposed declined inflammatory cell applicability and amplified production of fibroblasts, new blood vessels, and displacement of collagen subsequent to kirenol treatment. RT-PCR study displayed diminished concentration of NF-κB, COX-2, iNOS, MMP-2 and MMP-9 levels in reply to kirenol. In accordance with all above findings our present study indicates that kirenol upholds wound medicinal prospective in hyperglycemic circumstances and might be constructive as a dealing and management for unceasing lesions in diabetic patients.


Asunto(s)
Antiinflamatorios/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Diterpenos/farmacología , Mediadores de Inflamación/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Cicatrización de Heridas/efectos de los fármacos , Animales , Línea Celular , Movimiento Celular/efectos de los fármacos , Ciclooxigenasa 2/metabolismo , Diabetes Mellitus Experimental/enzimología , Diabetes Mellitus Experimental/inmunología , Diabetes Mellitus Experimental/patología , Regulación hacia Abajo , Femenino , Peroxidación de Lípido/efectos de los fármacos , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Metaloproteinasas de la Matriz/genética , Ratones , FN-kappa B/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Ratas Wistar
19.
Life Sci ; 233: 116728, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31386877

RESUMEN

Impaired wound healing is a serious concern of uncontrolled hyperglycemia that can lead to gangrene, and even death. There is an urgent need to look for better alternative therapy because of the undesirable side effects of currently available synthetic drugs in the market. Syringic acid (SA) is a natural phenolic compound abundantly available in edible fruits and plants. In this study, wound healing activities of 2.5% and 5.0% SA were evaluated in type 2 diabetic rats using incisional wound model. SA-treated diabetic wounds showed faster rate of wound closure and epithelization with enhanced contents of hydroxyproline and protein compared to diabetic wounds. SA effectively prevents alterations in blood glucose levels, serum insulin and dyslipidemia in diabetic wound rats. The SA-treated diabetic wounds after 14 days of treatment demonstrated inhibition of pro-inflammatory response (NF-κB p65, TNF-α, IL-1ß, IL-8 and IL-2) with improvement in anti-inflammatory response (IL-10), inhibited the elevated oxidative stress and decreased the concentrations of matrix metalloproteinases (MMP-2, -8 and -9) and increased the concentrations of TIMP-1 & TIMP- 2. Furthermore, the diabetic wounds were presented with an increase in expression of CD 31 and 68, growth factors (TGF-ß1, collagen-I and α-SMA and VEGF) with significant improvement in collagen deposition, re-epithelialization and complete skin structure as revealed by histological analysis after treatment of diabetic wounds with SA for 14 days. Hence, the results of this study designate that SA significantly improves wound healing in diabetic rats and could be used as a potential therapy for treatment of diabetic wounds.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Ácido Gálico/análogos & derivados , Regulación de la Expresión Génica/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Animales , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Ácido Gálico/farmacología , Insulina/sangre , Lípidos/análisis , Masculino , Ratas , Ratas Wistar
20.
RNA Biol ; 15(8): 1071-1080, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29995562

RESUMEN

OBJECTIVE: The present study was designed to investigate the molecular mechanism and biological roles of lncRNA brain-derived neurotrophic factor antisense (lncRNA BDNF-AS) in acute spinal cord injury (ASCI). METHODS: The rat model of ASCI and hypoxic cellular model were established to detect the expression of BDNF-AS, miR-130b-5p, PR (PRDI-BF1 and RIZ) domain protein 5 (PRDM5) and cleaved caspase 3 (c-caspase 3) using qRT-PCR and western blot. Basso, Beattie and Bresnahan (BBB) score was carried out to assess neurological function. Flow cytometry was used to determine the apoptosis of neuronal cells. The association among BDNF-AS, miR-130b-5p and PRDM5 were disclosed by RNA immunoprecipitation (RIP) assay, RNA pull-down assay and dual-luciferase reporter assay. RESULTS: BDNF-AS, PRDM5 and c-caspase 3 expression were significantly upregulated, while miR-130b-5p was suppressed in the ASCI group and neuronal cells following hypoxia treatment. BDNF-AS knockdown inhibited neuronal cell apoptosis. Further studies indicated that BDNF-AS functioned as a competing endogenous RNA (ceRNA) by sponging miR-130b-5p in neuronal cells. Further investigations demonstrated that PRDM5 was a target of miR-130b-5p and BDNF-AS knockdown exerted anti-apoptotic effects via miR-130b-5p/PRDM5 axis. CONCLUSION: The lncRNA BDNF-AS/miR-130b-5p/PRDM5 axis might be a promising therapeutic target for ASCI.


Asunto(s)
Apoptosis , Factor Neurotrófico Derivado del Encéfalo/antagonistas & inhibidores , MicroARNs/genética , Neuronas/patología , ARN Largo no Codificante/genética , Traumatismos de la Médula Espinal/patología , Factores de Transcripción/metabolismo , Enfermedad Aguda , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Proliferación Celular , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Masculino , Neuronas/metabolismo , Factor 1 de Unión al Dominio 1 de Regulación Positiva/genética , Factor 1 de Unión al Dominio 1 de Regulación Positiva/metabolismo , Ratas , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/metabolismo , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...