Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Mater Chem B ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38904147

RESUMEN

Improving the regenerative ability of senescent stem cells is a critical issue in combating aging. The destiny and function of senescent stem cells are controlled by the niche, including the physical architecture of the surface of the extracellular matrix (ECM). In this study, we explored the functions of TiO2 nanotube topography on mesenchymal stem cells (MSCs) under senescence, as well as its mechanical effects on senescence. First, we created different nanotube topographies on the titanium samples. Next, we cultured senescent mesenchymal stem cells (S-MSCs) on samples with various nanotube topographies to determine suitable parameters. We found nanotube with a diameter of 10 nm significantly alleviated the cellular senescence of S-MSCs and improved the osteogenic differentiation of S-MSCs in vitro. Using an ectopic periodontium regeneration model, we confirmed that specific nanotube topography could promote tissue regeneration of S-MSCs in vivo. Moreover, we demonstrated that nanotube topography activated YAP in S-MSCs and reformed nuclear-cytoskeletal morphology to inhibit senescence. Taken together, our study establishes a bridge linking between nano-topography, mechanics, and senescence, suggesting a potential strategy to improve tissue regeneration in aged individuals by providing optimized surface topography on biomaterials.

2.
J Extracell Vesicles ; 13(4): e12434, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38634538

RESUMEN

Apoptosis releases numerous apoptotic vesicles that regulate processes such as cell proliferation, immunity, and tissue regeneration and repair. Now, it has also emerged as an attractive candidate for biotherapeutics. However, apoptotic vesicles encompass a diverse range of subtypes, and it remains unclear which specific subtypes play a pivotal role. In this study, we successfully isolated different apoptotic vesicle subtypes based on their sizes and characterized them using NTA and TEM techniques, respectively. We compared the functional variances among the distinct subtypes of apoptotic vesicles in terms of stem cell proliferation, migration, and differentiation, as well as for endothelial cell and macrophage function, effectively identifying subtypes that exhibit discernible functional differences. ApoSEV (with diameter <1000 nm) promoted stem cell proliferation, migration, and multi-potent differentiation, and accelerated skin wound healing of diabetes mouse model, while apoBD (with diameter >1000 nm) played the opposite effect on cell function and tissue regeneration. Lastly, employing protein analysis and gene sequencing techniques, we elucidated the intrinsic mechanisms underlying these differences between different subtypes of apoEVs. Collectively, this study identified that apoptotic vesicle subtypes possessed distinct bio-functions in regulating stem cell function and behaviour and modulating tissue regeneration, which primarily attribute to the distinct profiling of protein and mRNA in different subtypes. This comprehensive analysis of specific subtypes of apoEVs would provide novel insights for potential therapeutic applications in cell biology and tissue regeneration.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Ratones , Animales , Células Madre Mesenquimatosas/metabolismo , Cicatrización de Heridas/fisiología , Diferenciación Celular , Proliferación Celular
3.
Cell Metab ; 35(11): 2028-2043.e7, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37939660

RESUMEN

Identification of cues originating from skeletal muscle that govern bone formation is essential for understanding the crosstalk between muscle and bone and for developing therapies for degenerative bone diseases. Here, we identified that skeletal muscle secreted multiple extracellular vesicles (Mu-EVs). These Mu-EVs traveled through the bloodstream to reach bone, where they were phagocytized by bone marrow mesenchymal stem/stromal cells (BMSCs). Mu-EVs promoted osteogenic differentiation of BMSCs and protected against disuse osteoporosis in mice. The quantity and bioactivity of Mu-EVs were tightly correlated with the function of skeletal muscle. Proteomic analysis revealed numerous proteins in Mu-EVs, some potentially regulating bone metabolism, especially glycolysis. Subsequent investigations indicated that Mu-EVs promoted the glycolysis of BMSCs by delivering lactate dehydrogenase A into these cells. In summary, these findings reveal that Mu-EVs play a vital role in BMSC metabolism regulation and bone formation stimulation, offering a promising approach for treating disuse osteoporosis.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Osteoporosis , Ratones , Animales , Osteogénesis , Proteómica , Vesículas Extracelulares/metabolismo , Músculo Esquelético/metabolismo , Diferenciación Celular , Osteoporosis/metabolismo , MicroARNs/metabolismo
4.
Int J Nanomedicine ; 18: 6955-6977, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38026535

RESUMEN

Background: Diabetic chronic wounds present a formidable challenge in clinical management, lacking effective treatment options. Mesenchymal stem cell (MSC) transplantation has emerged as a promising therapy for tissue repair and regeneration. However, transplanted MSCs often undergo rapid apoptosis, giving rise to heterogeneous extracellular vesicles (EVs), including apoptotic bodies (apoBDs) and apoptotic small extracellular vesicles (apoSEVs). The potential stimulatory role of these EVs in diabetic wound healing remains unknown. Methods: In this study, we investigated the effects of apoSEVs derived from adipose-derived mesenchymal/stromal cells (ADSCs) on the recovery of diabetic wounds by modulating the function of versatile target cells. First, we characterized the apoSEVs and apoBDs derived from apoptotic ADSCs. Subsequently, we evaluated the effects of apoSEVs and apoBDs on macrophages, endothelial cells, and fibroblasts, three essential cell types in wound healing, under high-glucose conditions. Furthermore, we developed a gelatin methacryloyl (GelMA) hydrogel for the sustained release of apoSEVs and investigated its therapeutic effects on wound healing in type 2 diabetic mice in vivo. Results: apoSEVs facilitated the polarization of M1 phenotype macrophages to M2 phenotype, promoted proliferation, migration, and tube formation of endothelial cells, and enhanced fibroblast proliferation and migration. However, apoBDs failed to improve the function of endothelial cells and fibroblasts. In vivo, the apoSEVs-loaded GelMA effectively promoted wound healing by facilitating collagen fiber deposition, angiogenesis, and immune regulation. Conclusion: Our study elucidates the beneficial effects of apoSEVs on wound recovery in diabetes and introduces a novel strategy for diabetic wound treatment based on apoSEVs.


Asunto(s)
Diabetes Mellitus Experimental , Células Madre Mesenquimatosas , Ratones , Animales , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Experimental/metabolismo , Células Endoteliales , Cicatrización de Heridas , Piel , Células Madre Mesenquimatosas/metabolismo
5.
Heliyon ; 9(9): e20019, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37809643

RESUMEN

Considerable achievements were realized in illuminating underlying pathological mechanisms of patients with idiopathic membranous nephropathy (IMN). Although IMN patients are well diagnosed before they reach renal failure, no currently available drug intervention is effective in halting IMN progression. In this study, we assess Moshen granule (MSG) effect on IMN patients and cationic bovine serum albumin (CBSA)-induced rats. Increasing studies has indicated that activation of aryl hydrocarbon receptor (AHR) was related to oxidative stress and inflammation. We further determine MSG effect on AHR, nuclear factor ƙB (NF-ƙB) and nuclear factor erythroid 2-related factor 2 (Nrf2) in the CBSA-induced rats. MSG markedly reduces proteinuria and improves kidney function in both IMN patients and rats induced by CBSA. MSG markedly inhibits increased mRNA expressions of intrarenal AHR and its four downstream target genes including CYP1A1, CYP1A2, CYP1B1 and COX-2 compared with untreated CBSA-induced rats. This is accompanied by markedly downregulated protein expressions of p-IƙBα and NF-ƙB p65 and its downstream gene products including MCP-1, COX-2, 12-LOX, iNOS, p47phox and p67phox, while markedly preserves protein expressions of Nrf2 and its downstream gene products including catalase, HO-1, GCLM, GCLC, MnSOD and NQO1 in the kidney tissues. These data suggests MSG blunts podocyte damage through inhibiting activation of NF-ƙB/Nrf2 pathway via AHR signaling. This finding may provide a promising therapy for treatment of IMN through oxidative stress and inflammation.

6.
Int J Oral Maxillofac Implants ; 38(4): 811-819, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37669515

RESUMEN

Purpose: To analyze the effects of age on the sinus graft remodeling of transalveolar sinus floor elevation (SFE) with simultaneous placement of dental implants. Materials and Methods: A retrospective study design was adopted. A total of 222 sites in 216 patients who underwent transalveolar SFE with immediate implant placement were included. The clinical and radiographic data were collected at preoperative, postoperative, and postloading time points. Age was divided into three groups: < 30 years, 30 to 50 years, and > 50 years. The ratio of sinus graft resorption (Ratio) was used to evaluate the outcomes of the surgery and loading. ANOVA was applied to explore the correlation of total elevation height (TEH) with implant loading. The Ridge regression model was used to explore the relationship between Ratio and age and other possible factors. Results: A total of 222 implants in 216 patients were included for implant-based analysis. The TEH averaged 6.983 ± 2.251 mm on the day after surgery (T1), and sinus graft resorption was found during the healing period and after implant loading (P < .01). Age was found to be a reliable correlation with the Ratio (P < .01). A significantly decreased bone formation efficiency was found with aging. Conclusion: According to the results of this retrospective chart review, age was the main factor affecting the outcomes when applying transalveolar SFE with simultaneous implant placement. This finding could be a guide for clinical treatment.


Asunto(s)
Implantes Dentales , Elevación del Piso del Seno Maxilar , Humanos , Adulto , Estudios Retrospectivos , Elevación del Piso del Seno Maxilar/métodos , Seno Maxilar/cirugía , Implantación Dental Endoósea/métodos , Resultado del Tratamiento
7.
Acta Biomater ; 157: 609-624, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36526242

RESUMEN

Osteoporosis is a highly prevalent skeletal bone disorder worldwide with characteristics of reduced bone mass and increased risk of osteoporotic fractures. It has been predicted to become a global challenge with the aging of the world population. However, the current therapy based on antiresorptive drugs and anabolic drugs has unwanted side effects. Although cell-based treatments have shown therapeutic effects for osteoporosis, there are still some limitations inhibiting the process of clinical application. In the present study, we developed EVs derived from skeletal muscle tissues (Mu-EVs) as a cell-free therapy to treat disuse-induced osteoporosis. Our results showed that Mu-EVs could be prepared easily and abundantly from skeletal muscle tissues, and that these Mu-EVs had typical features of extracellular vesicles. In vitro studies demonstrated that Mu-EVs from normal skeletal muscles could be phagocytized by bone marrow stromal/stem cells (BMSCs) and osteoclasts (OCs), and promoted osteogenic differentiation of BMSCs while inhibited OCs formation. Correspondingly, Mu-EVs from atrophic skeletal muscles attenuated the osteogenesis of BMSCs and strengthened the osteoclastogenesis of monocytes. In vivo experiments revealed that Mu-EVs could efficiently reverse disuse-induced osteoporosis by enhancing bone formation and suppressing bone resorption. Collectively, our results suggest that Mu-EVs may be a potential cell-free therapy for osteoporosis treatment. STATEMENT OF SIGNIFICANCE: Osteoporosis is a highly prevalent skeletal bone disorder worldwide and has become a global health concern with the aging of the world population. The current treatment for osteoporosis has unwanted side effects. Extracellular veiscles (EVs) from various cell sources are a promising candidate for osteoporosis treatment. In the present study, our team established protocols to isolate EVs from culture supernatant of skeletal muscles (Mu-EVs). Uptake of Mu-EVs by BMSCs and osteoclasts influences the balance of bone remodeling via promoting the osteogenic differentiation of BMSCs and inhibiting the osteoclasts formation of monocytes. In addition, exogenous Mu-EVs from normal skeletal muscles are proved to reverse the disuse-induced osteoporosis. We provide experimental evidence that Mu-EVs therapy is a potential cell-free platform for osteoporosis treatment towards clinical application.


Asunto(s)
Resorción Ósea , Vesículas Extracelulares , Enfermedades Musculoesqueléticas , Osteoporosis , Humanos , Osteogénesis , Diferenciación Celular , Osteoporosis/terapia , Músculo Esquelético
8.
Acta Biomater ; 157: 352-366, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36470392

RESUMEN

Systemic elimination of senescent cells using senolytic drugs presents therapeutic effects on age-related diseases, including senile osteoporosis. However, low bioavailability and potential side effects of senolytics restrict clinical application. Therefore, we developed a bone-targeted delivery system for senolytics to effective treatment of senile osteoporosis. In this study, quercetin was screened out as the ideal senolytics for eliminating senescent BMSCs. Treatment of quercetin efficiently decreased the senescence markers in senescent BMSCs models. After treatment with quercetin in vitro, cell mitosis and calcification staining assay confirmed that the proliferation and osteogenesis of the senescent BMSCs populations were enhanced. To enhance the effectiveness and minimize the side effect of treatment, liposomes decorated with bone affinity peptide (DSS)6 were constructed for bone-targeted delivery of quercetin. After administration of liposomes loading quercetin in two aged mice models, histological and cellular analysis confirmed that bone-targeted treatment with quercetin efficiently eliminated senescent cells in bone, restored the function of BMCSs, and promoted bone formation in aged mice models when compared to non-targeted treatment. Taken together, the bone-targeted delivery of senolytics efficiently eliminates senescent cells to recover bone mass and microarchitecture, showing an effective treatment for senile osteoporosis. STATEMENT OF SIGNIFICANCE: Senile osteoporosis, a common and hazardous chronic disease, has been still lacking effective therapy. How to effectively eliminate the hazards of senescent cells in skeleton to bone formation remains challenge. In this study, quercetin was screened out as the ideal senolytic drug for senescent BMSCs and could effectively eliminated senescent BMSCs to restore the cellular functions of senescent BMSCs models in vitro. Then, the bone-targeted liposomes were designed to encapsulate and deliver senolytics efficiently to senile bone tissue. Based on two aged mice models, we confirmed that bone-targeted delivery of quercetin efficiently eliminated senescent cells in skeleton and enhanced bone formation in vivo, suggesting the bone-targeted elimination of senescent cells is an effective treatment for senile osteoporosis.


Asunto(s)
Senescencia Celular , Osteoporosis , Ratones , Animales , Osteogénesis , Senoterapéuticos , Quercetina/farmacología , Liposomas , Envejecimiento/patología , Huesos/patología , Osteoporosis/patología
9.
J Mater Chem B ; 10(48): 10097-10111, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36458580

RESUMEN

Regeneration of dental pulp via the transplantation of dental pulp stem cells (DPSCs) has emerged as a novel therapy for dental pulp necrosis after inflammation and injury. However, providing sufficient oxygen and nutrients to support stem cell survival, self-renewal, and differentiation in the narrow root canal remains a great challenge. In this study, we explored a novel strategy based on cell-laden microfibers for dental pulp regeneration. Firstly, we fabricated suitable GelMA hydrogels that facilitate the survival and proliferation of DPSCs and human umbilical vein endothelial cells (HUVECs) and possess satisfactory biomechanical properties to generate microfibers. Two kinds of GelMA microfibers were fabricated with DPSCs and HUVECs via a silicone-tube-based coagulant bath-free method. Live/dead and Ki-67 immunofluorescence staining assays identified that these two cell lines maintained high survival rate and proliferation ability in GelMA microfibers. Immunofluorescence staining confirmed that DPSCs fully spread in the microfibers and highly expressed CD90 and laminin. HUVECs positively express CD31 and VE-cad in microfibers and could migrate well in the GelMA hydrogel. In vitro permeation experiments confirmed the superiority of microfiber aggregates (MAs) in liquid permeation compared to GelMA hydrogel blocks. We further adopted an ectopic pulp regeneration assay in nude mice to validate the regeneration of the aggregates of mixed DPSC-microfibers and HUVEC-microfibers in vivo. Compared to a conventional mixture of DPSCs and HUVECs in GelMA hydrogel blocks, the aggregates of cell-laden microfibers generated more pulp-like tissue, blood vessels, and odontoblast-like cells that positively express DMP-1 and DSPP. To our knowledge, this is the first attempt to apply cell-laden MAs for pulp regeneration. Our study proposes a new solution to the challenge of pulp regeneration, which might promote the clinical translation and application of stem cell-based therapy.


Asunto(s)
Pulpa Dental , Regeneración , Ratones , Animales , Humanos , Ratones Desnudos , Hidrogeles/farmacología , Células Endoteliales de la Vena Umbilical Humana
11.
J Digit Imaging ; 35(6): 1530-1543, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35819536

RESUMEN

Hypertensive intracerebral hemorrhage (HICH) is an intracerebral bleeding disease that affects 2.5 per 10,000 people worldwide each year. An effective way to cure this disease is puncture through the dura with a brain puncture drill and tube; the accuracy of the insertion determines the quality of the surgery. In recent decades, surgical navigation systems have been widely used to improve the accuracy of surgery and minimize risks. Augmented reality- and mixed reality-based surgical navigation is a promising new technology for surgical navigation in the clinic, aiming to improve the safety and accuracy of the operation. In this study, we present a novel multimodel mixed reality navigation system for HICH surgery in which medical images and virtual anatomical structures can be aligned intraoperatively with the actual structures of the patient in a head-mounted device and adjusted when the patient moves in real time while under local anesthesia; this approach can help the surgeon intuitively perform intraoperative navigation. A novel registration method is used to register the holographic space and serves as an intraoperative optical tracker, and a method for calibrating the HICH surgical tools is used to track the tools in real time. The results of phantom experiments revealed a mean registration error of 1.03 mm and an average time consumption of 12.9 min. In clinical usage, the registration error was 1.94 mm, and the time consumption was 14.2 min, showing that this system is sufficiently accurate and effective for clinical application.


Asunto(s)
Realidad Aumentada , Hemorragia Intracraneal Hipertensiva , Cirugía Asistida por Computador , Humanos , Sistemas de Navegación Quirúrgica , Hemorragia Intracraneal Hipertensiva/diagnóstico por imagen , Hemorragia Intracraneal Hipertensiva/cirugía , Cirugía Asistida por Computador/métodos , Fantasmas de Imagen , Imagenología Tridimensional
12.
Comput Biol Med ; 146: 105585, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35544973

RESUMEN

PURPOSE: In this research, we present a personalized simulation training system for percutaneous needle insertion based on virtual reality (VR). Within this system, surgeons can become more familiar with real surgical procedures, thereby reducing errors that may occur in real surgery. Additionally, different VR technologies, i.e., zSpace and Vive, were compared to provide surgeons with a better surgical training environment. METHODS: and Methods A VR system combined with the treatment planning system was developed to create personalized patient training environment. An evaluation study recruiting twenty novices was performed to demonstrate the system. Each participant performed six independent needle placements using the VR system. Placement time was recorded. Placement error was defined as the distance from the needle tip to the target center. The participants completed a seven-point Likert scale questionnaire after the simulation. RESULTS: Compared with Vive, using zspace reduces the placement time (from 90.32 s to 68.94 s). The placement error using zSpace and Vive was similar (1.27 ± 0.68 mm, 1.56 ± 0.81 mm, respectively). The questionnaire survey results show that most participants are highly satisfied with the training effect of the VR system. Participants prefer the operation mode and convenience of zSpace but think that the immersion of Vive is better. CONCLUSIONS: The personalized virtual reality surgical training system was effective as a training system for percutaneous needle insertion. The system based on zSpace had a shorter placement time while maintaining placement accuracy compared to the system based on Vive. The system based on zSpace achieved higher satisfaction in most aspects except for immersion.


Asunto(s)
Entrenamiento Simulado , Cirujanos , Realidad Virtual , Simulación por Computador , Humanos , Entrenamiento Simulado/métodos , Interfaz Usuario-Computador
13.
Med Phys ; 49(6): 3963-3979, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35383964

RESUMEN

BACKGROUND: The number of patients who suffer from glioma has been increasing, and this malignancy is a serious threat to human health. The mainstream treatment for glioma is surgical resection; therefore, accurate resection can improve postoperative patient recovery. PURPOSE: Many studies have investigated surgical navigation guided by mixed reality, with good outcomes. However, the limitations of mixed reality, such as spatial drift caused by environmental changes, limit its clinical application. Therefore, we present a mixed reality surgical navigation system for glioma resection. Preoperative information can be fused precisely with the real patient with the spatial compensation method to achieve clinically suitable accuracy. METHODS: A head-mounted device was used to display virtual information, and a markerless spatial registration method was applied to precisely align the virtual anatomy with the real patient preoperatively. High-accuracy preoperative and intraoperative movement and spatial drift compensation methods were used to increase the positional accuracy of the mixed reality-guided glioma resection system when the patient's head is fixed to the bed frame. Several experiments were designed to validate the accuracy and efficacy of this system. RESULTS: Phantom experiments were performed to test the efficacy and accuracy of this system under ideal conditions, and clinical tests were conducted to assess the performance of this system in clinical application. The accuracy of spatial registration was 1.18 mm in the phantom experiments and 1.86 mm in the clinical application. CONCLUSIONS: Herein, we present a mixed reality-based multimodality-fused surgical navigation system for assisting surgeons in intuitively identifying the glioma boundary intraoperatively. The experimental results indicate that this system has suitable accuracy and efficacy for clinical usage.


Asunto(s)
Realidad Aumentada , Glioma , Cirugía Asistida por Computador , Adulto , Glioma/diagnóstico por imagen , Glioma/cirugía , Humanos , Imagenología Tridimensional , Fantasmas de Imagen , Cirugía Asistida por Computador/métodos , Sistemas de Navegación Quirúrgica
14.
Br J Pharmacol ; 179(1): 103-124, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34625952

RESUMEN

BACKGROUND AND PURPOSE: In chronic kidney disease (CKD), patients inevitably reach end-stage renal disease and require renal transplant. Evidence suggests that CKD is associated with metabolite disorders. However, the molecular pathways targeted by metabolites remain enigmatic. Here, we describe roles of 1-hydroxypyrene in mediating renal fibrosis. EXPERIMENTAL APPROACH: We analysed 5406 urine and serum samples from patients with Stage 1-5 CKD using metabolomics, and 1-hydroxypyrene was identified and validated using longitudinal and drug intervention cohorts as well as 5/6 nephrectomised and adenine-induced rats. KEY RESULTS: We identified correlations between the urine and serum levels of 1-hydroxypyrene and the estimated GFR in patients with CKD onset and progression. Moreover, increased 1-hydroxypyrene levels in serum and kidney tissues correlated with decreased renal function in two rat models. Up-regulated mRNA expression of aryl hydrocarbon receptor and its target genes, including CYP1A1, CYP1A2 and CYP1B1, were observed in patients and rats with progressive CKD. Further we showed up-regulated mRNA expression of aryl hydrocarbon receptor and its three target genes, plus up-regulated nuclear aryl hydrocarbon receptor protein levels in mice and HK-2 cells treated with 1-hydroxypyrene, which caused accumulation of extracellular matrix components. Treatment with aryl hydrocarbon receptor short hairpin RNA or flavonoids inhibited mRNA expression of aryl hydrocarbon receptor and its target genes in 1-hydroxypyrene-induced HK-2 cells and mice. CONCLUSION AND IMPLICATIONS: Metabolite 1-hydroxypyrene was demonstrated to mediate renal fibrosis through activation of the aryl hydrocarbon receptor signalling pathway. Targeting aryl hydrocarbon receptor may be an alternative therapeutic strategy for CKD progression.


Asunto(s)
Receptores de Hidrocarburo de Aril , Insuficiencia Renal Crónica , Animales , Citocromo P-450 CYP1A1/genética , Fibrosis , Humanos , Ratones , Pirenos , Ratas , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Insuficiencia Renal Crónica/inducido químicamente , Insuficiencia Renal Crónica/tratamiento farmacológico
15.
J Tissue Eng ; 13: 20417314221143240, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36600998

RESUMEN

The establishment of effective vascularization represents a key challenge in regenerative medicine. Adequate sources of vascular cells and intact vessel fragments have not yet been explored. We herein examined the potential application of microvessels induced from hiPSCs for rapid angiogenesis and tissue regeneration. Microvessels were generated from human pluripotent stem cells (iMVs) under a defined induction protocol and compared with human adipose tissue-derived microvessels (ad-MVs) to illustrate the similarity and differences of the alternative source. Then, the therapeutic effect of iMVs was detected by transplantation in vivo. The renal ischemia-reperfusion model and skin damage model were applied to explore the potential effect of vascular cells derived from iMVs (iMVs-VCs). Besides, the subcutaneous transplantation model and muscle injury model were established to explore the ability of iMVs for angiogenesis and tissue regeneration. The results revealed that iMVs had remarkable similarities to natural blood vessels in structure and cellular composition, and were potent for vascular formation and self-organization. The infusion of iMVs-VCs promoted tissue repair in the renal and skin damage model through direct contribution to the reconstruction of blood vessels and modulation of the immune microenvironment. Moreover, the transplantation of intact iMVs could form a massive perfused blood vessel and promote muscle regeneration at the early stage. The infusion of iMVs-VCs could facilitate the reconstruction and regeneration of blood vessels and modulation of the immune microenvironment to restore structures and functions of damaged tissues. Meanwhile, the intact iMVs could rapidly form perfused vessels and promote muscle regeneration. With the advantages of abundant sources and high angiogenesis potency, iMVs could be a candidate source for vascularization units for regenerative medicine.

16.
Comput Biol Med ; 140: 105091, 2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34872012

RESUMEN

BACKGROUND AND OBJECTIVE: Hypertensive intracerebral hemorrhage is characterized by a high rate of morbidity, mortality, disability and recurrence. Neuroendoscopy has been utilized for treatment as an advanced technology. However, traditional neuroendoscopy allows professionals to see only tissue surfaces, and the field of vision is limited, which cannot provide spatial guidance. In this study, an AR-based neuroendoscopic navigation system is proposed to assist surgeons in locating and clearing hematoma. METHODS: The neuroendoscope can be registered through the vector closed loop algorithm. The single-shot method is designed to register medical images with patients precisely. Real-time AR is realized based on video stream fusion. Dual-mode AR navigation is proposed to provide comprehensive guidance from catheter implantation to hematoma removal. A series of experiments is designed to validate the accuracy and significance of this system. RESULTS: The average root mean square error of the registration between medical images and patients is 0.784 mm, and the variance is 0.1426 mm. The pixel mismatching degrees are less than 1% in different AR modes. In catheter implantation experiments, the average error of distance is 1.28 mm, and the variance is 0.43 mm, while the average error of angles is 1.34°, and the variance is 0.45°. Comparative experiments are also conducted to evaluate the feasibility of this system. CONCLUSION: This system can provide stereo images with depth information fused with patients to guide surgeons to locate targets and remove hematoma. It has been validated to have high accuracy and feasibility.

17.
Int J Nanomedicine ; 16: 6681-6692, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34616151

RESUMEN

PURPOSE: Extracellular vesicles (EVs) are membrane-encapsulated nanoparticles that function as carriers and play a role in intercellular communication. There are a large number of EVs in the blood and serve as an indicator of pathophysiological conditions. Studies on the basics and application of EVs are hampered by the limitations of current protocols to isolate EVs from blood. However, current isolation methods are difficult to achieve a balance between yield and purity. METHODS: Firstly, we use Sepharose-4B to build a self-made size exclusion chromatography (SEC) column and perform separation and characteristics. Then, we use the SEC column to systematically compare the efficiency with the most common EV isolation methods: Ultracentrifugation (UC) and total exosomes isolation commercial kit (TEI). The EVs isolated through different methods were characterized the yield and size of EVs, analyzed their protein profiles, the morphology and purity were observed under the transmission electron microscope. To further improve the quality and purity, we combined SEC and UC methods and established a two-steps method to isolated EVs from serum. RESULTS: Self-made SEC column can well separate EVs from complex serum protein, and EVs enriched in the 8-13 fractions with good morphology and yield. By systematically compare SEC with the commonly used UC and TEI kit, SEC is outstanding in all aspects and balances both isolation purity and yield. However, using the SEC method alone still has certain limitations and residual impurities. The SEC+UC combined method can cleverly solve the shortcomings of SEC and optimize the quality and purity of EVs from serum, which is much better than using one method alone. CONCLUSION: Our study presents the combination of size-exclusion chromatography and ultracentrifugation as a feasible and time-saving method to isolate high-quality and purity extracellular vesicles from serum.


Asunto(s)
Exosomas , Vesículas Extracelulares , Proteínas Sanguíneas , Cromatografía en Gel , Ultracentrifugación
18.
Bone Joint Res ; 9(10): 689-700, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33231490

RESUMEN

AIMS: The study aimed to determine whether the microRNA miR21-5p (MiR21) mediates temporomandibular joint osteoarthritis (TMJ-OA) by targeting growth differentiation factor 5 (Gdf5). METHODS: TMJ-OA was induced in MiR21 knockout (KO) mice and wild-type (WT) mice by a unilateral anterior crossbite (UAC) procedure. Mouse tissues exhibited histopathological changes, as assessed by: Safranin O, toluidine blue, and immunohistochemistry staining; western blotting (WB); and quantitative real-time polymerase chain reaction (RT-qPCR). Mouse condylar chondrocytes were transfected with a series of MiR21 mimic, MiR21 inhibitor, Gdf5 siRNA (si-GDF5), and flag-GDF5 constructs. The effects of MiR-21 and Gdf5 on the expression of OA related molecules were evaluated by immunofluorescence, alcian blue staining, WB, and RT-qPCR. RESULTS: UAC altered the histological structure and extracellular matrix content of cartilage in the temporomandibular joint (TMJ), and KO of MiR21 alleviated this effect (p < 0.05). Upregulation of MiR21 influenced the expression of TMJ-OA related molecules in mandibular condylar chondrocytes via targeting Gdf5 (p < 0.05). Gdf5 overexpression significantly decreased matrix metalloproteinase 13 (MMP13) expression (p < 0.05) and reversed the effects of MiR21 (p < 0.05). CONCLUSION: MiR21, which acts as a critical regulator of Gdf5 in chondrocytes, regulates TMJ-OA related molecules and is involved in cartilage matrix degradation, contributing to the progression of TMJ-OA. Cite this article: Bone Joint Res 2020;9(10):689-700.

19.
Front Pharmacol ; 11: 527744, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33041790

RESUMEN

The purpose of this study was to elucidate the role of the circadian gene Bmal1 in human cartilage and its crosstalk with the MAPK/ERK signaling pathway in temporomandibular joint osteoarthritis (TMJ-OA). We verified the periodical variation of the circadian gene Bmal1 and then established a modified multiple platform method (MMPM) to induce circadian rhythm disturbance leading to TMJ-OA. IL-6, p-ERK, and Bmal1 mRNA and protein expression levels were assessed by real-time RT-PCR and immunohistochemistry. Chondrocytes were treated with an ERK inhibitor (U0126), siRNA and plasmid targeting Bmal1 under IL-6 simulation; then, the cells were subjected to Western blotting to analyze the relationship between Bmal1 and the MAPK/ERK pathway. We found that sleep rhythm disturbance can downregulate the circadian gene BMAL-1 and improve phosphorylated ERK (p-ERK) and IL-6 levels. Furthermore, Bmal1 siRNA transfection was sufficient to improve the p-ERK level and aggravate OA-like gene expression changes under IL-6 stimulation. Bmal1 overexpression relieved the alterations induced by IL-6, which was consistent with the effect of U0126 (an ERK inhibitor). However, we also found that BMAL1 upregulation can decrease ERK phosphorylation, whereas ERK downregulation did not change BMAL1 expression. Collectively, this study provides new insight into the regulatory mechanism that links chondrocyte BMAL1 to cartilage maintenance and repair in TMJ-OA via the MAPK/ERK pathway and suggests that circadian rhythm disruption is a risk factor for TMJ-OA.

20.
Arthritis Res Ther ; 22(1): 99, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32357909

RESUMEN

BACKGROUND: Due to the lack of research on the pathological mechanism of temporomandibular joint osteoarthritis (TMJOA), there are few effective treatment measures in the clinic. In recent years, microRNAs (miRs) have been demonstrated to play an important role in the pathogenesis of osteoarthritis (OA) by regulating a variety of target genes, and the latest evidence shows that miR-21-5p is specifically overexpressed in OA. The purpose of this project was to clarify whether miR-21-5p can regulate the TMJOA process by targeting Spry1. METHODS: TMJOA was induced by a unilateral anterior crossbite (UAC) model, and the effect of miR-21-5p knockout on TMJOA was evaluated by toluidine blue (TB), immunohistochemical (IHC) staining, Western blotting (WB) and RT-qPCR. Primary mouse condylar chondrocytes (MCCs) were isolated, cultured and transfected with a series of mimics, inhibitors, siRNA-Spry1 or cDNA Spry1. WB, RT-qPCR, IHC and TB were used to detect the effect of miR-21-5p and its target gene Spry1 on the expression of MMP-13, VEGF and p-ERK1/2 in TMJOA. The effect of miR-21-5p on angiogenesis was evaluated by chick embryo chorioallantoic membrane (CAM) assay and WB. RESULTS: In the UAC model, the cartilage thickness and extracellular matrix of miR-21-5p knockout mice were less damaged, and miR-21-5p and UAC model were shown to affect the expression of Spry1, IL-1ß, MMP-13, and VEGF. Luciferase experiments confirmed that Spry1 was the direct target of miR-21-5p. The expression levels of Spry1, MMP-13, VEGF and p-ERK1/2 in MCCs transfected with miR-21-5p mimic were higher than those in the inhibitor group. Under the simulated inflammatory environment of IL-1ß, the expression levels of MMP-13, VEGF and p-ERK1/2 were positively correlated with miR-21-5p, while Spry1 was negatively correlated with miR-21-5p. Inhibition of miR-21-5p expression and overexpression of Spry1 enhanced the inhibition of MMP-13, VEGF and p-ERK1/2 expression. MiR-21-5p had a significant role in promoting angiogenesis in the chick embryo CAM assay, and this role was clearly mediated by the ERK-MAPK signalling pathway. CONCLUSION: This study verified that miR-21-5p can promote the process of TMJOA by targeting Spry1, which provides a new direction for future research on the treatment of this disease.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Matriz Extracelular/patología , Proteínas de la Membrana/genética , MicroARNs/genética , Neovascularización Patológica/genética , Osteoartritis , Articulación Temporomandibular/fisiopatología , Animales , Células Cultivadas , Embrión de Pollo , Condrocitos , Ratones , Ratones Noqueados , Osteoartritis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...