Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(9)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38732273

RESUMEN

Drought and salinity stress reduce root hydraulic conductivity of plant seedlings, and melatonin application positively mitigates stress-induced damage. However, the underlying effect of melatonin priming on root hydraulic conductivity of seedlings under drought-salinity combined remains greatly unclear. In the current report, we investigated the influence of seeds of three wheat lines' 12 h priming with 100 µM of melatonin on root hydraulic conductivity (Lpr) and relevant physiological indicators of seedlings under PEG, NaCl, and PEG + NaCl combined stress. A previous study found that the combined PEG and NaCl stress remarkably reduced the Lpr of three wheat varieties, and its value could not be detected. Melatonin priming mitigated the adverse effects of combined PEG + NaCl stress on Lpr of H4399, Y1212, and X19 to 0.0071 mL·h-1·MPa-1, 0.2477 mL·h-1·MPa-1, and 0.4444 mL·h-1·MPa-1, respectively, by modulating translation levels of aquaporin genes and contributed root elongation and seedlings growth. The root length of H4399, Y1212, and X19 was increased by 129.07%, 141.64%, and 497.58%, respectively, after seeds pre-treatment with melatonin under PEG + NaCl combined stress. Melatonin -priming appreciably regulated antioxidant enzyme activities, reduced accumulation of osmotic regulators, decreased levels of malondialdehyde (MDA), and increased K+ content in stems and root of H4399, Y1212, and X19 under PEG + NaCl stress. The path investigation displayed that seeds primed with melatonin altered the modification of the path relationship between Lpr and leaf area under stress. The present study suggested that melatonin priming was a strategy as regards the enhancement of root hydraulic conductivity under PEG, NaCl, and PEG + NaCl stress, which efficiently enhanced wheat resistant to drought-salinity stress.


Asunto(s)
Sequías , Melatonina , Raíces de Plantas , Salinidad , Plantones , Semillas , Triticum , Melatonina/farmacología , Triticum/efectos de los fármacos , Triticum/genética , Triticum/fisiología , Triticum/crecimiento & desarrollo , Triticum/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Semillas/efectos de los fármacos , Plantones/efectos de los fármacos , Plantones/metabolismo , Plantones/genética , Estrés Fisiológico/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Estrés Salino , Cloruro de Sodio/farmacología , Antioxidantes/metabolismo , Agua/metabolismo
2.
Plants (Basel) ; 13(3)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38337894

RESUMEN

Field experiments were conducted to analyze the effectiveness of the crop stress index (CWSI) obtained by infrared thermal imaging to indicate crop water status, and to determine the appropriate CWSI threshold range for wheat at different growth stages. The results showed that the sensitivity of plant physiological parameters to soil water was different at different growth stages. The sensitivity of stomatal conductance (Gs) and transpiration rate (Tr) to soil water was higher than that of leaf relative water content (LRWC) and photosynthetic rate (Pn). The characteristics of plant physiology and biomass (yield) at each growth stage showed that the plant production would not suffer from drought stress as long as the soil water content (SWC) was maintained above 57.0% of the field water capacity (FWC) during the jointing stage, 63.0% of the FWC during the flowering stage and 60.0% of the FWC during the filling stage. Correlation analysis showed that the correlation of CWSI with Gs, Tr and Pn was lower than that with LRWC and SWC at the jointing stage. CWSI was extremely significantly negatively correlated with SWC and LRWC (p < 0.01), but significantly negatively correlated with Gs, Tr and Pn (p < 0.05). At the flowering stage, CWSI was extremely significantly negatively correlated with all physiological and soil parameters (p < 0.01). The regression analysis showed that the CWSI of winter wheat was correlated with biomass (grain yield) in a curvilinear relationship at each growth stage. When the CWSI increased to a certain extent, the biomass and yield showed a decreasing trend with the increase in CWSI. Comprehensive analysis of all indexes showed that CWSI can be used as a decision-making index to guide the water-saving irrigation of winter wheat, as long as the CWSI threshold of plants was maintained at 0.26-0.38 during the jointing stage, 0.27-0.32 during the flowering stage and 0.30-0.36 during the filling stage, which could not only avoid the adverse effects of water stress on crop production, but also achieve the purpose of water saving.

3.
Plants (Basel) ; 12(24)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38140412

RESUMEN

To develop optimal management strategies for water and nitrogen fertilizer application in winter wheat cultivation, we conducted a potted experiment to investigate the effects of different irrigation levels and nitrogen fertilizer treatments on the activity of starch synthesis-related enzymes and the grain quality of winter wheat. The potted experiment consisted of three irrigation levels, with the lower limits set at 50-55% (I0), 60-65% (I1), and 70-75% (I2) of the field capacity. In addition, four levels of nitrogen fertilizer were applied, denoted as N0 (0 kg N hm-2), N1 (120 kg N hm-2), N2 (240 kg N hm-2), and N3 (300 kg N hm-2), respectively. The results revealed the significant impacts of irrigation and nitrogen treatments on the activities of key starch-related enzymes, including adenosine diphosphoglucose pyrophosphrylase (ADPG-PPase), soluble starch synthase (SSS), granule-bound starch synthase (GBSS), and starch branching enzymes (SBE) in wheat grains. These treatments also influenced the starch content, amylopectin content, and, ultimately, wheat yield. In summary, our findings suggest that maintaining irrigation at a lower limit of 60% to 65% of the field capacity and applying nitrogen fertilizer at a rate of 240 kg hm-2 is beneficial for achieving both high yield and high quality in winter wheat cultivation.

4.
Plants (Basel) ; 12(17)2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37687280

RESUMEN

In the main agricultural area for waxy maize production in China, waterlogging occurs frequently during the waxy maize jointing stage, and this causes significant yield reduction. It is very important to understand the physiological mechanism of waterlogging stress in waxy maize during the jointing stage to develop strategies against waterlogging stress. Therefore, this study set waterlogging treatments in the field for 0, 2, 4, 6, 8, and 10 days during the waxy maize jointing stage, and were labelled CK, WS2, WS4, WS6, WS8 and WS10, respectively. By analyzing the effect of waterlogging on the source, sink, and transport of photoassimilates, the physiological mechanism of waterlogging stress in the jointing stage was clarified. The results show that PEPC and POD activities and Pro content decreased significantly under WS2 compared to CK. Except for these three indicators, the Pn, GS, leaf area, kernel number, yield, and puncture strength of stems were significantly decreased under the WS4. Under the WS6, the content of MDA began to increase significantly, while almost all other physiological indices decreased significantly. Moreover, the structure of stem epidermal cells and the vascular bundle were deformed after 6 days of waterlogging. Therefore, the threshold value of waterlogging stress occured at 4 to 6 days in the jointing stage of waxy maize. Moreover, waterlogging stress at the jointing stage mainly reduces the yield by reducing the number of kernels; specifically, the kernel number decreased by 6.7-15.5% in 4-10 days of waterlogging, resulting in a decrease of 9.9-20.2% in the final yield. Thus, we have shown that waterlogging stress at the jointing stage results in the decrease of potential waxy maize kernel numbers and yield when the synthesis of sources was limited and the transport of photoassimilates was restricted.

5.
Front Plant Sci ; 14: 1201966, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37457351

RESUMEN

Proper irrigation and fertilization measures can not only improve water and fertilizer utilization efficiency, but also have important significance in ensuring agricultural environment security and sustainable development. A field experiment was conducted to determine the optimal drip fertilization measure of winter wheat and explain its mechanism by analyzing the physiological and ecological characteristics and utilization efficiency of water and nitrogen under different irrigation and fertilization methods. The plants were treated with three irrigation and fertilization methods: the traditional irrigation and fertilization method (CK), surface drip fertilization (I1) and underground drip fertilization (I2). The results demonstrated that different irrigation methods had various effects on population and physiological characteristics of wheat. The plant height, leaf area and tiller number of I1 were significantly higher than those of CK during the whole growth period. I2 decreased plant height, leaf area and tiller number at jointing stage, but at flowering stage, the leaf area of I2 t was significantly higher than that of CK. Different irrigation methods also affected the root distribution of wheat. At flowering stage, I1 had lower root biomass than CK in all soil layers. The upper root system of I2 was smaller, but the deep root system was larger compared with the control. I1 and I2 had lower total root weight and higher shoot biomass compared to CK, so their root-shoot ratio decreased significantly. I1 and I2 increased and instantaneous water use efficiency (IWUE) by increasing the photosynthetic rate (Pn) and reducing transpiration rate (Tr) at the flowering stage, while I2 had a similar Pn to I1, but reduced Tr, resulting in a higher IWUE than I1. Both I1 and I2 also increased root efficiency, root activity, and Fv/Fm of wheat at the late growth stage, promoting accumulated dry matter after flowering (ADM) and pre-flowering dry matter remobilization (DMR), leading to a significant increase in grain yield. In addition, I1 and I2 had significantly higher water productivity (WP), irrigation water productivity (IWP), nitrogen partial productivity (NPP) and nitrogen agronomic efficiency (NAE) than CK, especially I2 had the highest IWP, WP, NPP and NAE. These findings highlight the potential benefits of drip fertilization in promoting sustainable wheat production and elucidate the mechanism by which it promotes efficient use of water and fertilizer.

6.
Front Plant Sci ; 14: 1069551, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36818831

RESUMEN

Introduction: Extreme weather has occurred more frequently in recent decades, which results in more frequent drought disasters in the maize growing season. Severe drought often decreases remarkably plant growth and yield of maize, and even reduces significantly the quality of maize production, especially for waxy maize. Results: To study the changes in plant growth, fresh ear yield, and fresh grain quality of waxy maize under water deficits occurring at different growth stages, and further strengthen the field water management of waxy maize, water deficit experiments were carried out under a rain shelter in 2019 and 2020. Water deficit treatments were imposed respectively at the V6-VT (DV6-VT), VT-R2 (DVT-R2), and R2-R3 (DR2-R3) stages of waxy maize, and treatment with non-water deficit in the whole growing season was taken as the control (CK). The lower limit of soil water content was 50% of field capacity for a water deficit period and 65% of field capacity for a non-water deficit period. Results: In this study, water deficits imposed at V6-VT and VT-R2 stages decreased plant growth rate and leaf gas exchange parameters, accelerated leaf senescence, and limited ear growth of waxy maize, which resulted in 11.6% and 23.1% decreases in grains per ear, 19.4% and 7.3% declines in 100-grain weight, 20.3% and 14.2% losses in fresh ear yield in 2019 and 2020 growing seasons, respectively, while water deficit at R2-R3 stage had no significant effect on ear traits and fresh ear yield, but the fresh ear yield with husk of DR2-R3 decreased by 9.1% (P<0.05). The obvious water deficit imposed at the V6-VT and VT-R2 stages also lowered grain quality. Water deficits at the V6-VT and VT-R2 stages led to accelerated maturity, resulting in increased total protein, starch, and lysine content in grains at the R3 stage and decreased soluble sugar content. Principal component analysis revealed that when water deficits occurred in the waxy maize growing season, they firstly altered maize physiological processes, then affected ear characteristics and yield, and finally resulted in significant grain quality changes. In conclusion, a water deficit during V6-VT and VT-R2 not only reduced fresh ear yield but also adversely affected grain quality. However, water deficit during R2-R3 had little effect on total protein, starch, and soluble sugar content,but increased obviously lysine content. Discussion: The above results suggested that avoiding serious water deficits at the V6-VT and VT-R2 stages of waxy maize while imposing a slight water deficit at the R2-R3 stage has not only little effects on fresh ear yield but also a remarkable improvement in grain quality.

7.
Front Plant Sci ; 13: 864258, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35463394

RESUMEN

Accurate and timely appraisal of plant nitrogen (N) demand is imperative to regulate the canopy structure and corn production. The strength and time of plant N deficit can be quantified by critical N concentration. The study was aimed to analyze nitrogen nutrition index (NNI), nitrogen deficit content (NDC), plant nitrogen productivity (PNP), and a fraction of intercepted photosynthetic active radiation (FIPAR) across different N treatments and to develop NNI-NDC, NNI-PNP, NNI-FIPAR, NDC-PNP, and NDC-FIPAR relationships from V6 to V12 stages of corn to quantify the suitable PNP and FIPAR values under the optimal plant N condition. Four multi-N rates (0, 75, 90, 150, 180, 225, 270, and 300 kg N ha-1) field experiments were conducted with two cultivars of corn in Henan province of China. Results indicated that N fertilization affected yield, plant biomass, plant N content, and leaf area index. The values of NNI and NDC were from 0.54 to 1.28 kg ha-1 and from -28.13 to 21.99 kg ha-1 under the different treatments of N rate, respectively. The NDC and NNI showed significantly negative relationships from V6 to V12 stages. The values of PNP and FIPAR increased gradually with the crop growth process. The PNP values gradually declined while the FIPAR values of every leaf layer increased with the increase of N supply. The NDC-PNP and NNI-FIPAR relationships were significantly positive; however, the relationships between NNI-PNP and NDC-FIPAR were significantly negative during the vegetative period of corn. The coefficient of determination (R 2) based on NNI was better than that on NDC. The FIPAR values were ~0.35, 0.67, and 0.76% at the upper, middle, and bottom of leaf layers, respectively, and PNP values were ~39, 44, and 51 kg kg-1 at V6, V9, and V12 stages, respectively, when NNI and NDC values were equal to 1 and 0 kg ha-1, respectively. This study described the quantitative information about the effect of a plant's internal N deficit on plant N productivity and canopy light intercept. The projected results would assist in predicting the appropriate plant growth status during key N top-dressing stages of corn, which can optimize N application and improve N use efficiency.

8.
J Environ Manage ; 265: 110549, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32275251

RESUMEN

A site experiment was conducted to assess temporal dynamics of soil organic carbon (SOC) and the drivers under no-tillage (NT) and residue retention (RR) in the North China Plain (NCP). The results indicated that NT and RR can significantly increase SOC up to a depth of 30 cm. On average, NT increased SOC by 8.1-34.5% compared with PT, and RR increased SOC by 3.5-14.4% compared with R0 at 0-10 cm. Increases in SOC under NT or RR could be increased by 4-10 percentage points through the significantly positive interactions of NT and RR. Among the sources of SOC variations, tillage-induced variations accounted for 74.4 and 44.3% of the total variations in SOC at 0-5 cm for wheat and maize season, respectively. Experimental duration was also a significant source of variation. Stepwise regression indicated dynamics in SOC at 0-5 cm mainly due to the positive effects of precipitation, the negative effects of soil bulk density for the wheat season, the negative effects of radiation for the maize season, and antagonistic effects of temperature between wheat and maize season. Generally, positive effects of NT and RR on SOC were both confirmed, but fluctuations and variations induced by interactions of practices and seasonal climatic conditions were also significant in the NCP.


Asunto(s)
Suelo , Triticum , Agricultura , Carbono , China , Zea mays
9.
Sci Total Environ ; 649: 1299-1306, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30308900

RESUMEN

Mitigating greenhouse gases (GHGs) emissions from rice paddy (Oryza sativa L.) and balancing the trade-offs between reducing emission and sustaining food security have raised global concerns. A global meta-analysis of rice experimental data was conducted to assess changes in emissions of GHGs (CH4 and N2O) and global warming potential (GWP) in response to improvements through 12 field management practices. The results indicated that changes in GWP were mainly attributed to CH4 emission even though N2O emission was significantly affected by conversion of field management practices. Specifically, GWP per unit rice plant area (area-scaled) was significantly increased by 20.1%, 66.2%, and 84.5% with nitrogen (N) fertilizer input, manuring, and residue retention (P < 0.05), along with significant increments in area-scaled CH4 emission under the above management practices by 8.9%, 60.4%, and 91.8%, respectively (P < 0.05). Due to the significant increase in rice yield, a decreasing trend for GWP per unit rice yield (yield-scaled) was observed with N fertilizer input. In addition, CH4 and GWP decreased significantly at both area- and yield-scale under non-flooding irrigation but with a reduction in rice yield by 3.3% (P < 0.05). Improvement in rice variety significantly enhanced crop yield by 15.3% while reducing area-scaled GWP by 27.7% (P < 0.05). Furthermore, other management practices, such as application of herbicides, biochar, and amendments (non-fertilizer materials) reduced yield-scaled GWP while increasing rice yield. Thus, changes in field management practices have the potential to balance the trade-offs between high yield and low emission of GHGs. However, in-depth studies are needed to determine the interactions between field management practices and site-specific soil/climate conditions.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Calentamiento Global/prevención & control , Gases de Efecto Invernadero/análisis , Metano/análisis , Óxido Nitroso/análisis , Oryza/crecimiento & desarrollo , Contaminantes Atmosféricos/análisis , Contaminación del Aire/prevención & control , Producción de Cultivos/métodos
10.
Ecotoxicol Environ Saf ; 113: 483-90, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25562177

RESUMEN

In China, coal-mining industries are mainly located in the water shortage areas including arid or semiarid areas. Mine wastewater is used for irrigation of agricultural land in these areas. However, few studies have been conducted to address ecological and food safety risks caused by mine wastewater irrigation. In this research, a pot experiment was performed to examine the effects of mine wastewater irrigation on soil enzymes, physiological properties of wheat and potential risks of heavy metal contamination to wheat crop. Plants were subjected to three mine wastewater irrigation treatments: leacheate of coal gangue (T1), coal-washing wastewater (T2) and precipitated coal-washing wastewater (T3). Plants irrigated with well water were taken as the control (CK). The results showed that mine wastewater irrigation caused adverse effects on soil enzymes, physiological properties and grain yield of winter wheat. At anthesis, T1, T2 and T3 treatments significantly reduced the activities of soil enzymes (urease, sucrase and catalase), root activity and net photosynthetic rate of wheat compared to CK. At maturity, grain yield was decreased by 17.8%, 15.4% and 9.8% by T1, T2 and T3, respectively, as compared to that of CK. Importantly, mine wastewater irrigation resulted in accumulation of heavy metals (Cr, Pb, Cu and Zn) in wheat grain. Contents of these heavy metals in grains of winter wheat subjected to mine wastewater irrigation were significantly higher than those in CK. The comprehensive contamination indexes of wheat grain in T1, T2 and T3 all reached high pollution level. Our results showed that mine wastewater irrigation significantly increased the pollution risk of heavy metals, thus unsuitable for crop irrigation.


Asunto(s)
Riego Agrícola , Metales Pesados/metabolismo , Suelo/química , Triticum/metabolismo , Aguas Residuales/toxicidad , China , Grano Comestible/química , Enzimas/análisis , Concentración de Iones de Hidrógeno , Residuos Industriales , Metales Pesados/análisis , Minería , Fotosíntesis , Raíces de Plantas/efectos de los fármacos , Estaciones del Año , Triticum/crecimiento & desarrollo , Agua
11.
Ying Yong Sheng Tai Xue Bao ; 24(11): 3243-8, 2013 Nov.
Artículo en Chino | MEDLINE | ID: mdl-24564156

RESUMEN

A pot experiment was conducted to study the effects of irrigation with mine wastewater on the physiological characters and heavy metals accumulation of winter wheat. Three treatments were installed, i. e., irrigation with coal-washing wastewater (T1), irrigation with coal-washing wastewater after its precipitation (T2), and irrigation with coal gangue leacheate (T3), taking the well water irrigation as the control (CK). The plants were irrigated with mine wastewater after the turning green stage. Irrigation with mine wastewater had negative effects on the winter wheat growth and grain yield. At anthesis stage, the leaf area, dry mass per stem, root activity, and net photosynthetic rate of winter wheat in treatments T1, T2, and T3 were significantly lower than those in CK (P < 0.05), the plant height and leaf chlorophyll content in T3 decreased significantly (P < 0.05), and the grain yield in T1, T2 and T3 was decreased by 15.4%, 9.8%, and 17.8%, respectively. In addition, the heavy metals (Cr, Pb, Cu and Zn) contents in the grain of winter wheat under mine wastewater irrigation were significantly higher than those in CK, suggesting that the irrigation with mine wastewater could result in the heavy metals accumulation in wheat grain.


Asunto(s)
Riego Agrícola/métodos , Metales Pesados/análisis , Triticum/química , Triticum/crecimiento & desarrollo , Aguas Residuales/química , China , Contaminación de Alimentos/análisis , Minería , Estaciones del Año , Semillas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...