Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phytochemistry ; 225: 114196, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38936529

RESUMEN

One previously undescribed xanthanolide sesquiterpene dimer pungiolide P (1), possessing an unprecedented scaffold with a 5/7/5/7/5 ring system skeleton and its intermediate pungiolide Q (2), ten xanthanolide sesquiterpenes (3-12), two eudesmene sesquiterpene derivatives (13-14), one phenylpropionic acid derivative (15), together with eleven known compounds (16-26) were obtained from the fruits of Xanthium italicum Moretti. A possible biosynthetic pathway for pungiolide P (1) was also proposed, which was supported by its bio-synthetic intermediate (2). Compounds 1, 4-5, 18-21, and 25 exhibited cytotoxic activity against a variety of human cancer cell lines. Furthermore, compounds 1, 4-5, could cause blockage of the cell cycle in the G2/M phase and induce apoptosis in H460 cells. Notably, pungiolide P (1) exhibited significantly superior cytotoxicity compared to previously reported compounds, providing valuable insights for natural anti-tumor sources.


Asunto(s)
Antineoplásicos Fitogénicos , Apoptosis , Ensayos de Selección de Medicamentos Antitumorales , Frutas , Sesquiterpenos , Xanthium , Xanthium/química , Humanos , Sesquiterpenos/química , Sesquiterpenos/farmacología , Sesquiterpenos/aislamiento & purificación , Frutas/química , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Estructura Molecular , Relación Estructura-Actividad , Proliferación Celular/efectos de los fármacos
2.
J Asian Nat Prod Res ; : 1-13, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38885306

RESUMEN

Three new prenylated C6-C3 compounds (1-3), together with two known prenylated C6-C3 compounds (4-5) and one known C6-C3 derivative (6), were isolated from the roots of Illicium brevistylum A. C. Smith. The structures of 1-3 were elucidated by spectroscopic methods including 1D and 2D NMR, HRESIMS, CD experiments and ECD calculations. The structure of illibrefunone A (1) was confirmed by single-crystal X-ray diffraction analysis. All compounds were evaluated in terms of their anti-inflammatory potential on nitric oxide (NO) generation in lipopolysaccharide-stimulated murine RAW264.7 macrophages and murine BV2 microglial cells, antiviral activity against Coxsackievirus B3 (CVB3) and influenza virus A/Hanfang/359/95 (H3N2). Compounds 3 and 4 exhibited potent inhibitory effects on the production of NO in RAW 264.7 cells with IC50 values of 20.57 and 12.87 µM respectively, which were greater than those of dexamethasone (positive control). Compounds 1 and 4-6 exhibited weak activity against Coxsackievirus B3, with IC50 values ranging from 25.87 to 33.33 µM.

3.
J Nat Prod ; 87(4): 1036-1043, 2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38600636

RESUMEN

Triterpenoids are a type of specialized metabolites that exhibit a wide range of biological activities. However, the availability of some minor triterpenoids in nature is limited, which has hindered our understanding of their pharmacological potential. To overcome this limitation, heterologous biosynthesis of triterpenoids in yeast has emerged as a promising and time-efficient production platform for obtaining these minor compounds. In this study, we analyzed the transcriptomic data of Enkianthus chinensis to identify one oxidosqualene cyclase (EcOSC) gene and four CYP716s. Through heterologous expression of these genes in yeast, nine natural pentacyclic triterpenoids, including three skeleton products (1-3) produced by one multifunctional OSC and six minor oxidation products (4-9) catalyzed by CYP716s, were obtained. Of note, we discovered that CYP716E60 could oxidize ursane-type and oleanane-type triterpenoids to produce 6ß-OH derivatives, marking the first confirmed C-6ß hydroxylation in an ursuane-type triterpenoid. Compound 9 showed moderate inhibitory activity against NO production and dose-dependently reduced IL-1ß and IL-6 production at the transcriptional and protein levels. Compounds 1, 2, 8, and 9 exhibited moderate hepatoprotective activity with the survival rates of HepG2 cells from 61% to 68% at 10 µM.


Asunto(s)
Antiinflamatorios , Sistema Enzimático del Citocromo P-450 , Transferasas Intramoleculares , Triterpenos , Triterpenos/farmacología , Triterpenos/química , Humanos , Sistema Enzimático del Citocromo P-450/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/química , Estructura Molecular , Saccharomyces cerevisiae , Hidroxilación , Células Hep G2 , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Sustancias Protectoras/farmacología , Sustancias Protectoras/química
4.
Angew Chem Int Ed Engl ; 63(13): e202315674, 2024 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-38327006

RESUMEN

Sesquiterpene synthases (STPSs) catalyze carbocation-driven cyclization reactions that can generate structurally diverse hydrocarbons. The deprotonation-reprotonation process is widely used in STPSs to promote structural diversity, largely attributable to the distinct regio/stereoselective reprotonations. However, the molecular basis for reprotonation regioselectivity remains largely understudied. Herein, we analyzed two highly paralogous STPSs, Artabotrys hexapetalus (-)-cyperene synthase (AhCS) and ishwarane synthase (AhIS), which catalyze reactions that are distinct from the regioselective protonation of germacrene A (GA), resulting in distinct skeletons of 5/5/6 tricyclic (-)-cyperene and 6/6/5/3 tetracyclic ishwarane, respectively. Isotopic labeling experiments demonstrated that these protonations occur at C3 and C6 of GA in AhCS and AhIS, respectively. The cryo-electron microscopy-derived AhCS complex structure provided the structural basis for identifying different key active site residues that may govern their functional disparity. The structure-guided mutagenesis of these residues resulted in successful functional interconversion between AhCS and AhIS, thus targeting the three active site residues [L311-S419-C458]/[M311-V419-A458] that may act as a C3/C6 reprotonation switch for GA. These findings facilitate the rational design or directed evolution of STPSs with structurally diverse skeletons.


Asunto(s)
Transferasas Alquil y Aril , Sesquiterpenos , Microscopía por Crioelectrón , Sesquiterpenos/química , Catálisis , Dominio Catalítico , Transferasas Alquil y Aril/genética
5.
J Asian Nat Prod Res ; 26(2): 204-213, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38213077

RESUMEN

Three new cadinane sesquiterpenes (1-3) and three known sesquiterpenes were isolated from the stems and branches of Illicium ternstroemioides A. C. Smith. The structures of the new compounds were elucidated by extensive analysis of spectroscopic and HRESIMS data. The structures of illiternins A-C (1-3) were confirmed by single crystal X-ray diffraction, allowing for the determination of their absolute configurations. Compounds 3 and 6 exhibited antiviral activity against Coxsackievirus B3 with IC50 values of 33.3 and 57.7 µM, respectively.


Asunto(s)
Illicium , Sesquiterpenos , Illicium/química , Estructura Molecular , Sesquiterpenos Policíclicos , Sesquiterpenos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA