Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38930167

RESUMEN

The hydrophilic and porous structure of cement-based concrete materials makes it vulnerable to various harmful ions dissolved in water in the environment or during the freeze-thaw cycle, resulting in a significant decline in durability. Therefore, the introduction of hydrophobic hydroxyl silicone oil with good chemical stability and excellent hydrophobic properties during the process of concrete preparation to achieve the hydrophobic modification of its internal holes has very positive significance in terms of improving its durability. In order to disperse the hydrophobic hydroxyl silicone oil evenly in the internal pores of the concrete, synthetic non-ionic polyether-modified silicone oil was used as an emulsifier to make it a water-soluble emulsion. The influences of the composition of the emulsifier on the dispersion, water contact angle, water absorption, porosity, and compressive strength of cement mortar were investigated. The results show that when the emulsion content is 0.5%, the pore volume of the cement mortar decreases by 15%, and the maximum contact angle reaches 128°, which is conducive to improving the anti-erosion and anti-freezing properties of concrete and provides a new solution for the preparation of high-durability concrete. However, the introduction of polyether-modified silicone oil increases the number of large holes in the cement mortar, and leads to an increase in water absorption and a decrease in compressive strength. It is necessary to further optimize the composition of emulsifier in future work.

2.
Stem Cell Res ; 64: 102930, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36206672

RESUMEN

Prolyl 4-hydroxylase subunit alpha-2(P4HA2) is associated with autosomal dominant high myopia. A significant reduction of P4HA2 protein expression has been observed in fibroblast cells of high myopia patients with inherited P4HA2 mutations. To explore the function of P4HA2 in cases of high myopia, we generated a P4HA2-KO hES cell line (FDCHDPe012-A) efficiently through CRISPR/Cas9 system. We confirmed the presence of a 5-bp biallelic deletion, causing a frameshift and premature P4HA2 translation termination. The FDCHDPe012-A presented morphology of typical stem cells expressed pluripotent genes, possessed a normal parental karyotype, and could differentiate into three germ layers.


Asunto(s)
Células Madre Embrionarias Humanas , Miopía , Prolil Hidroxilasas , Humanos , Línea Celular , Sistemas CRISPR-Cas/genética , Células Madre Embrionarias Humanas/metabolismo , Miopía/genética , Miopía/metabolismo , Prolil Hidroxilasas/genética , Prolil Hidroxilasas/metabolismo
3.
Gene ; 820: 146289, 2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35143940

RESUMEN

Reactivation of fetal hemoglobin by editing the B-cell lymphoma/leukemia 11A (BCL11A) erythroid enhancer is an effective gene therapy for ß-thalassemia. Using the CRISPR/Cas9 system, fetal γ-globin expression can be robustly reactivated to mitigate the clinical course of ß-thalassemia. In our study, we found that the transfection efficiencies of CD34+ hematopoietic stem/progenitor cells (HSPCs) were significantly and negatively correlated with the length of plasmids and greatly affected by the linearization of plasmids. Furthermore, the transgene expression of minicircles (MC) without plasmid backbone sequences was better both in vitro and in vivo compared with conventional plasmids. Thus, MC DNA was used to deliver the cassette of Staphylococcus aureus Cas9 (SaCas9) into HSPCs, and a single-guide RNA targeting the erythroid enhancer region of BCL11A was selected. After electroporation with MC DNA, an evident efficiency of gene editing and reactivation of γ-globin expression in erythroblasts derived from unsorted HSPCs was acquired. No significant off-target effects were found by deep sequencing. Furthermore, fragments derived from lentiviral vectors, but not MC DNA, were highly enriched in promoter, exon, intron, distal-intergenic, and cancer-associated genes, indicating that MC DNA provided a relatively safe and efficient vector for delivering transgenes. The developed MC DNA vector provided a potential approach for the delivery of SaCas9 cassette and the reactivation of γ-globin expression for ameliorating syndromes of ß-thalassemia.


Asunto(s)
ADN Circular/uso terapéutico , Hemoglobina Fetal/metabolismo , Proteínas Represoras/metabolismo , Talasemia beta/genética , Talasemia beta/terapia , gamma-Globinas/genética , gamma-Globinas/metabolismo , Animales , Proteínas Bacterianas/metabolismo , Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas , ADN Circular/metabolismo , Edición Génica , Terapia Genética/métodos , Vectores Genéticos , Células Madre Hematopoyéticas/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Plásmidos , Regiones Promotoras Genéticas , ARN Guía de Kinetoplastida/metabolismo , ARN Guía de Kinetoplastida/uso terapéutico
4.
Phenomics ; 2(3): 201-210, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36939786

RESUMEN

The msh homeobox 1 (Msx1) and msh homeobox 2 (Msx2) coordinate in myoblast differentiation and also contribute to muscle defects if altered during development. Deciphering the downstream signaling networks of Msx1 and Msx2 in myoblast differentiation will help us to understand the molecular events that contribute to muscle defects. Here, the proteomics characteristics in Msx1- and Msx2-mediated myoblast differentiation was evaluated  using isobaric tags for the relative and absolute quantification labeling technique (iTRAQ). The downstream regulatory proteins of Msx1- and Msx2-mediated differentiation were identified. Bioinformatics analysis revealed that these proteins were primarily associated with xenobiotic metabolism by cytochrome P450, fatty acid degradation, glycolysis/gluconeogenesis, arginine and proline metabolism, and apoptosis. In addition, our data show Acta1 was probably a core of the downstream regulatory networks of Msx1 and Msx2 in myoblast differentiation. Supplementary Information: The online version contains supplementary material available at 10.1007/s43657-022-00049-y.

5.
Stem Cell Res ; 56: 102516, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34469777

RESUMEN

The homozygous autosomal recessive truncating mutations of LDL receptor related protein associated protein 1 (LRPAP1) is a possible reason for Nonsyndromic Extreme Myopia, patients with which show typical chorioretinal degeneration. We generated an LRPAP1 knockout FDCHDPe009-B embryonic stem cell line to study mechanisms of retinal degeneration underlying LRPAP1 deficiency with the help of the CRISPR/Cas9 system. Two distinct biallelic deletions in the cell line have been confirmed, which causing a frameshift and premature stop codons thus influence the translation of LRPAP1. FDCHDPe009-B has maintained normal stem cell morphology, pluripotent gene expression, parental karyotype, and ability to differentiate into three germ layers.


Asunto(s)
Sistemas CRISPR-Cas , Células Madre Embrionarias Humanas , Sistemas CRISPR-Cas/genética , Línea Celular , Células Madre Embrionarias , Humanos , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad
6.
Biochem Biophys Res Commun ; 552: 157-163, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33744764

RESUMEN

ß-Thalassemia is an autosomal recessive genetic disease caused by defects in the production of adult hemoglobin (HbA, α2ß2), which leads to an imbalance between α- and non-α-globin chains. Reactivation of γ-globin expression is an effective strategy to treat ß-thalassemia patients. Previously, it was demonstrated that hemoglobin subunit beta pseudogene 1 (HBBP1) is associated with elevated fetal hemoglobin (HbF, α2γ2) in ß-thalassemia patients. However, the mechanism underlying HBBP1-mediated HbF production is unknown. In this study, using bioinformatics analysis, we found that HBBP1 is involved in γ-globin production, and then preliminarily confirmed this finding in K562 cells. When HBBP1 was overexpressed, γ-globin expression was increased at the transcript and protein levels in HUDEP-2 cells. Next, we found that ETS transcription factor ELK1 (ELK1) binds to the HBBP1 proximal promoter and significantly promotes its activity. Moreover, the synthesis of γ-globin was enhanced when ELK1 was overexpressed in HUDEP-2 cells. Surprisingly, ELK1 also directly bound to and activated the γ-globin proximal promoter. Furthermore, we found that HBBP1 and ELK1 can interact with each other in HUDEP-2 cells. Collectively, these findings suggest that HBBP1 can induce γ-globin by enhancing ELK1 expression, providing some clues for γ-globin reactivation in ß-thalassemia.


Asunto(s)
Regulación de la Expresión Génica , ARN Largo no Codificante/genética , Talasemia beta/genética , Proteína Elk-1 con Dominio ets/genética , gamma-Globinas/genética , Diferenciación Celular/genética , Línea Celular , Células Precursoras Eritroides/metabolismo , Perfilación de la Expresión Génica/métodos , Humanos , Células K562 , Interferencia de ARN , Talasemia beta/metabolismo , Proteína Elk-1 con Dominio ets/metabolismo , gamma-Globinas/metabolismo
7.
Sci Prog ; 104(1): 36850420980624, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33423598

RESUMEN

The chemical modifications of lignin-based superplasticizers have attracted extensive attentions during recent years. The comprehending of the structure-activity relationship of lignin-based superplasticizer is important to promote the modification and application research of lignin resources. However, lignin features complex and variable molecular structure, which is not conducive to study on structure-activity relationship of lignin-based superplasticizer as well as development and application of new lignin-based superplasticizer. However, the related research work can be simplified by selecting small molecular compound with appropriate molecular structure as the lignin model compound. This article intends to study the structure-activity relationship of lignin-based superplasticizer by using dihydroeugenol as the lignin model compound. Through the substitution of lignin by dihydroeugenol during the synthesis process, a model compound lignin-based superplasticizer (DAFS) was synthesized. The adsorption and dispersion properties of this superplasticizer and reference sample (LAFS) were investigated by fluidity test, Zeta-potential measurement, Total organic carbon analysis and others. The results suggest that the adsorption behavior of both DAFS and LAFS conformed to the Langmuir isotherms and Pseudo-second order kinetic. In cement paste, added with 1 g/L of LAFS and DAFS, Zeta potential were reduced from +3.5 to -15.2 mV and -18.7 mV, respectively. The substitution of lignin by dihydroeugenol has no significantly influence on the dispersive property, but differences on rheological properties which need to be optimized in the future. All the tests confirmed that dihydroeugenol is suitable to replace lignin on exploring the structure-activity relationship of lignin-based superplasticizer. This research work provides new insight on model study of lignin-based superplasticizer.


Asunto(s)
Lignina , Adsorción , Cinética , Lignina/química , Estructura Molecular , Reología
8.
Adv Healthc Mater ; 9(5): e1901582, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31990434

RESUMEN

Multiple drug resistance (MDR) exhibited by cancer cells and low intratumor accumulation of chemotherapeutics are the main obstacles in cancer chemotherapy. Herein, the preparation of a redox-responsive sulfur dioxide (SO2 )-releasing nanosystem, with high SO2 -loading capacity, aimed at improving the treatment efficacy of cancers exhibiting MDR is described. The multifunctional nanomedicine (MON-DN@PCBMA-DOX) is designed and constructed by coating mesoporous organosilica nanoparticles with a zwitterionic polymer, poly(carboxybetaine methacrylate) (PCBMA), which can concurrently load SO2 prodrug molecules (DN, 2,4-dinitrobenzenesulfonylchloride) and chemotherapeutics (DOX, doxorubicin). The generated SO2 molecules can sensitize cells to chemotherapy and overcome the MDR by downregulating the expression of P-glycoprotein. Furthermore, the PCBMA coating prolongs the blood circulation time of the inner core, leading to an increased intratumor accumulation of the nanomedicine. Owing to the prolonged blood circulation, enhanced tumor accumulation, and SO2 sensitization of cells to chemotherapy, the nanomedicine exhibits excellent tumor suppression with a tumor inhibition rate of 94.8%, and might provide a new platform for cancer therapy.


Asunto(s)
Nanopartículas , Neoplasias , Línea Celular Tumoral , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Portadores de Fármacos/uso terapéutico , Resistencia a Antineoplásicos , Humanos , Neoplasias/tratamiento farmacológico , Polímeros/uso terapéutico , Dióxido de Azufre/uso terapéutico , Resultado del Tratamiento
9.
Front Neurosci ; 12: 298, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29773975

RESUMEN

The cold shock protein RBM3 can mediate mild hypothermia-related protection in neurodegeneration such as Alzheimer's disease. However, it remains unclear whether RBM3 and mild hypothermia provide same protection in model of Parkinson's disease (PD), the second most common neurodegenerative disorder. In this study, human SH-SY5Y neuroblastoma cells subjected to insult by 1-methyl-4-phenylpyridinium (MPP+) served as an in-vitro model of PD. Mild hypothermia (32°C) aggravated MPP+-induced apoptosis, which was boosted when RBM3 was silenced by siRNA. In contrast, overexpression of RBM3 significantly reduced this apoptosis. MPP+ treatment downregulated the expression of RBM3 both endogenously and exogenously and suppressed its induction by mild hypothermia (32°C). In conclusion, our data suggest that cold shock protein RBM3 provides neuroprotection in a cell model of PD, suggesting that RBM3 induction may be a suitable strategy for PD therapy. However, mild hypothermia exacerbates MPP+-induced apoptosis even that RBM3 could be synthesized during mild hypothermia.

10.
Mol Genet Genomics ; 293(4): 1051-1060, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29671068

RESUMEN

Targeted integration of transgenes facilitates functional genomic research and holds prospect for gene therapy. The established microhomology-mediated end-joining (MMEJ)-based strategy leads to the precise gene knock-in with easily constructed donor, yet the limited efficiency remains to be further improved. Here, we show that single-strand DNA (ssDNA) donor contributes to efficient increase of knock-in efficiency and establishes a method to achieve the intracellular linearization of long ssDNA donor. We identified that the CRISPR/Cas9 system is responsible for breaking double-strand DNA (dsDNA) of palindromic structure in inverted terminal repeats (ITRs) region of recombinant adeno-associated virus (AAV), leading to the inhibition of viral second-strand DNA synthesis. Combing Cas9 plasmids targeting genome and ITR with AAV donor delivery, the precise knock-in of gene cassette was achieved, with 13-14% of the donor insertion events being mediated by MMEJ in HEK 293T cells. This study describes a novel method to integrate large single-strand transgene cassettes into the genomes, increasing knock-in efficiency by 13.6-19.5-fold relative to conventional AAV-mediated method. It also provides a comprehensive solution to the challenges of complicated production and difficult delivery with large exogenous fragments.


Asunto(s)
Sistemas CRISPR-Cas , ADN Viral , Dependovirus , Técnicas de Sustitución del Gen/métodos , Genoma Viral , Secuencias Repetidas Terminales , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , ADN Viral/biosíntesis , ADN Viral/genética , Dependovirus/genética , Dependovirus/metabolismo , Células HEK293 , Humanos
11.
J Mol Neurosci ; 63(2): 142-151, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28831692

RESUMEN

Induced by hypothermia, cold-inducible protein RBM3 (RNA-binding protein motif 3), has been implicated in neuroprotection against various toxic insults such as hypoxia and ischemia. However, whether mild hypothermia and RBM3 prevent neural cells from UV irradiation-elicited apoptosis is unclear. In the present study, human neuroblastoma cell line SH-SY5Y was used as a cell model for neural cell death, and it was demonstrated that mild hypothermia protects SH-SY5Y cells from UV irradiation-induced apoptosis. However, the protective effect of mild hypothermia was abrogated when RBM3 was silenced. Conversely, the overexpression of RBM3 rescued SH-SY5Y cells from UV-induced apoptosis, as indicated by the decreased levels of cleaved caspase-3 and PARP, and increased cell survival. The analysis on the mechanism underlying RBM3-mediated neuroprotection against UV insult showed that RBM3 could substantially block the activation of p38 and JNK signaling pathways. In addition, the overexpression of RBM3 reduced the expression of pro-apoptotic proteins Bax and Bad, leaving the pro-survival protein Bcl-2 unaffected. In conclusion, RBM3 is the key mediator of mild hypothermia-related protection against UV in neuroblastoma cells, and the neuroprotective effect might be exerted through interfering with pro-apoptotic signaling pathways p38 and JNK and regulating pro-apoptotic proteins Bax and Bad.


Asunto(s)
Apoptosis , Sistema de Señalización de MAP Quinasas , Neuroblastoma/metabolismo , Proteínas de Unión al ARN/metabolismo , Línea Celular Tumoral , Humanos , MAP Quinasa Quinasa 4/metabolismo , Neuronas/metabolismo , Neuronas/efectos de la radiación , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas de Unión al ARN/genética , Rayos Ultravioleta , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
12.
Sci Rep ; 7: 41738, 2017 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-28134320

RESUMEN

Nitric oxide (NO)-induced apoptosis in neurons is an important cause of neurodegenerative disease in humans. The cold-inducible protein RBM3 mediates the protective effects of cooling on apoptosis induced by various insults. However, whether RBM3 protects neural cells from NO-induced apoptosis is unclear. This study aimed to investigate the neuroprotective effect of RBM3 on NO-induced apoptosis in human SH-SY5Y neuroblastoma cells. Firstly, we demonstrated that mild hypothermia (32 °C) induces RBM3 expression and confers a potent neuroprotective effect on NO-induced apoptosis, which was substantially diminished when RBM3 was silenced by siRNA. Moreover, overexpression of RBM3 exhibited a strong protective effect against NO-induced apoptosis. Signaling pathway screening demonstrated that only p38 inhibition by RBM3 provided neuroprotective effect, although RBM3 overexpression could affect the activation of p38, JNK, ERK, and AKT signaling in response to NO stimuli. Notably, RBM3 overexpression also blocked the activation of p38 signaling induced by transforming growth factor-ß1. Furthermore, both RBM3 overexpression and mild hypothermia abolished the induction of miR-143 by NO, which was shown to mediate the cytotoxicity of NO in a p38-dependent way. These findings suggest that RBM3 protects neuroblastoma cells from NO-induced apoptosis by suppressing p38 signaling, which mediates apoptosis through miR-143 induction.


Asunto(s)
Apoptosis , Sistema de Señalización de MAP Quinasas , MicroARNs/genética , Neuroblastoma/genética , Neuroblastoma/metabolismo , Óxido Nítrico/metabolismo , Proteínas de Unión al ARN/metabolismo , Apoptosis/genética , Línea Celular Tumoral , Expresión Génica , Silenciador del Gen , Humanos , Proteínas de Unión al ARN/genética , Temperatura , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
13.
Yao Xue Xue Bao ; 51(11): 1711-6, 2016 11.
Artículo en Chino | MEDLINE | ID: mdl-29908114

RESUMEN

To study the role of oleanolic acid on interleukin (IL)-1ß-stimulated expression of inflammatory cytokines, and to explore its anti-inflammatory mechanism in SW982 cells, the toxicity of oleanolic acid on SW982 cells was detected by MTT; effects of different concentrations of oleanolic acid(5, 10, 20 µmol·L(-1)) on the expression of inflammatory factors IL-6, IL-8 and matrix metalloproteinase-1 (MMP-1) was tested at protein and m RNA levels. The study was performed in IL-1ß-stimulated SW982 cells together with enzyme-linked immunosorbent assay (ELISA) and real-time fluorescence quantitative PCR (real-time PCR) methods; the influence of oleanolic acid on the phosphorylation of mitogen-activated protein kinase (MAPK), phosphatidyl inositol-3-kinase/Akt (PI3K/Akt) and nuclear transcription factor-κB (NF-κB) signaling pathways related protein was analyzed by Western blot. Results showed that different concentrations of oleanolic acid(≤40 µmol·L(-1)) were almost non-toxicity to SW982 cells; oleanolic acid significantly inhibited the expression of inflammatory factors in a dose-dependent manner; oleanolic acid restrained extracellular signal-related kinase (ERK), p38, c-jun N-terminal kinase (JNK) and Akt protein phosphorylation and IκB-α protein degradation obviously. The inhibition effect of oleanolic acid on inflammatory factors stimulated by IL-1ß may be worked through MAPK, PI3K/Akt and NF-κB signaling pathways.


Asunto(s)
Antiinflamatorios/farmacología , Inflamación/metabolismo , Ácido Oleanólico/farmacología , Sarcoma Sinovial/metabolismo , Línea Celular , Citocinas/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Proteínas I-kappa B/metabolismo , Interleucina-1beta/farmacología , Metaloproteinasa 1 de la Matriz/metabolismo , Inhibidor NF-kappaB alfa/metabolismo , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Sarcoma Sinovial/tratamiento farmacológico , Transducción de Señal , Factor de Transcripción ReIA/metabolismo
14.
Mol Cell Biochem ; 402(1-2): 203-11, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25626893

RESUMEN

Polyethyleneimine (PEI) is a cost-effective and non-viral vector for gene transfer, but the factors determining gene transfer efficiency and cytotoxicity of PEI in different mammalian cell lines remain largely unknown. In the present study, three different cell lines were chosen for investigation. Using pEGFP DNA and PEI, 21.5, 29.2, and 92.1 % of GFP-positive cells were obtained in BMSC, Hela, and 293T, respectively. In luciferase reporter assay, similar results were obtained (for luciferase activity, BMSC < Hela < 293T cells). By MTT test and cell apoptotic marker analysis, we demonstrated that high gene transfer efficiency is accompanied with high cytotoxicity of PEI. Moreover, we found that high expression level of caveolin-1 was accompanied with high gene transfer efficiency and cytotoxicity of PEI in 293T cells. More convincingly, caveolin-1 silencing in 293T could reduce both gene transfer efficiency and cytotoxicity of PEI. In contrast, caveolin-1 overexpression in BMSCs increases both gene transfer efficiency and cytotoxicity of PEI. Taken together, our study suggests that caveolin-1 may at least in part determine gene transfer efficiency and cytotoxicity of PEI in mammalian cell lines, providing caveolin-1 as a potential target for improving gene transfer efficiency when applying positively charged polyplexes to cell transfection.


Asunto(s)
Caveolina 1/fisiología , Polietileneimina/toxicidad , Animales , Genes Reporteros , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Células HEK293 , Células HeLa , Humanos , Luciferasas de Renilla/biosíntesis , Luciferasas de Renilla/genética , Ratones , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA