Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Res ; 252(Pt 3): 118968, 2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38643820

RESUMEN

The widespread application of rare earth elements (REEs) in contemporary industries and agriculture, has caused emerging contaminant accumulation in aquatic environments. However, there is a limited scope of risk assessments, particularly in relation to human health associated with REEs. This study investigated the provenance, and contamination levels of REEs, further evaluating their environmental and human health risks in river sediments from an agricultural basin. The concentrations of REEs ranged from 30.5 to 347.7 mg/kg, with showing an upward trend from headwater to downstream. The positive matrix factorization (PMF) model identified natural and anthropogenic input, especially from agricultural activities, as the primary source of REEs in Mun River sediments. The contamination assessment by the geoaccumulation index (I-geo) and pollution load index (PLI) confirmed that almost individual REEs in the samples were slightly to moderately polluted. The potential ecological risk index (PERI) showed mild to moderate risks in Mun River sediment. Regular fertilization poses pollution and ecological risks to agricultural areas, manifesting as an enrichment of light REEs in river sediments. Nevertheless, Monte Carlo simulations estimated the average daily doses of total REEs from sediments to be 0.24 µg/kg/day for adults and 0.95 µg/kg/day for children, comfortably below established human health thresholds. However, the risk of REE exposure appears to be higher in children, and sensitivity analyses suggested that REE concentration contributed more to health risks, whether the adults or children. Thus, concerns regarding REE contamination and risks should be raised considering the wide distribution of agricultural regions, and further attention is warranted to assess the health risks associated with other routes of REE exposure.

2.
Environ Sci Pollut Res Int ; 30(48): 106736-106749, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37737948

RESUMEN

Rare earth elements (REE) are emerging pollutants of concern, impacted by intensive fertilizer use and discharge of human and animal waste into agricultural watersheds. However, the natural values and potential anthropogenic enrichment of REE in aqueous systems of the agricultural basins remain poorly understood. This study investigated the spatial variation of dissolved REE in a predominantly agricultural river (Mun River) in northeast Thailand. Dissolved ΣREE concentrations in the Mun River ranged from 5.08 to 272.91 ng/L, with the highest concentrations observed in the middle reaches where agricultural fertilizers and wastewater increased dissolved REE concentrations. The PAAS-normalized patterns and dissolved Eu anomaly jointly reveal that the dissolved ΣREE mainly originated from local rocks and agricultural fertilizers. The dissolved REE in the Mun River is characteristic of a depleted light REE relative to heavy REE, slightly negative Ce anomaly, positive Eu anomaly, and positive Gd anomaly in a punctate distribution. The correlation analysis of (La/Yb)N with fluvial pH and HCO3- indicates that the water environment characteristics of the Mun River control dissolved REE fractionation. The Ce anomaly is associated with the oxidation environment, whereas the Eu anomaly is linked to the lithologic inheritance. Positive punctate Gd anomalies are influenced by human-caused wastewater discharge and applying fertilizers, raising Gd concentrations beyond natural background levels. This study has suggested that the geochemical characteristics of dissolved REE are affected by agricultural disturbances, and future environmental research on dissolved REE is essential to clarifying the impacts of REE on agriculture, the environment, and human health.


Asunto(s)
Metales de Tierras Raras , Contaminantes Químicos del Agua , Animales , Humanos , Aguas Residuales , Ríos , Tailandia , Fertilizantes/análisis , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Metales de Tierras Raras/análisis , Agricultura
3.
J Hazard Mater ; 458: 131913, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37392646

RESUMEN

The development of the economy and society makes heavy metals (HMs) pollution more and more serious. And, pollution source identification is the primary work of environmental pollution control and land planning. Notably, stable isotope technology has a high ability to distinguish pollution sources, and can better reflect the migration behavior and contribution of HMs from diverse sources, which has become a hot research tool for pollution source identification of HMs. Currently, the rapid development of isotope analysis technology provides a relatively reliable reference for pollution tracking. Based on this background, the fractionation mechanism of stable isotopes and the influence of environmental processes on isotope fractionation are reviewed. Furthermore, the processes and requirements for the measurement of metal stable isotope ratios are summarized, and the calibration methods and detection accuracy of sample measurement are evaluated. Besides, the current commonly used binary model and multi-mixed models in the identification of contaminant sources are also concluded. Moreover, the isotopic changes of different metallic elements under natural and anthropogenic conditions are discussed in detail, and the application prospects of multi-isotope coupling in the traceability of environmental geochemistry are evaluated. This work has some guidance for the application of stable isotopes in the source identification of environmental pollution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...