Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Free Radic Res ; 55(4): 364-374, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33401987

RESUMEN

The COVID-19 pandemic has so far affected more than 45 million people and has caused over 1 million deaths worldwide. Infection with SARS-CoV-2, the pathogenic agent, which is associated with an imbalanced redox status, causes hyperinflammation and a cytokine storm, leading to cell death. Glucose-6-phosphate dehydrogenase (G6PD) deficient individuals may experience a hemolytic crisis after being exposed to oxidants or infection. Individuals with G6PD deficiency are more susceptible to coronavirus infection than individuals with normally functioning G6PD. An altered immune response to viral infections is found in individuals with G6PD deficiency. Evidence indicates that G6PD deficiency is a predisposing factor of COVID-19.


Asunto(s)
COVID-19 , Deficiencia de Glucosafosfato Deshidrogenasa , SARS-CoV-2/fisiología , Virosis , COVID-19/complicaciones , COVID-19/epidemiología , COVID-19/genética , COVID-19/metabolismo , Susceptibilidad a Enfermedades , Glucosafosfato Deshidrogenasa/genética , Glucosafosfato Deshidrogenasa/metabolismo , Deficiencia de Glucosafosfato Deshidrogenasa/complicaciones , Deficiencia de Glucosafosfato Deshidrogenasa/epidemiología , Deficiencia de Glucosafosfato Deshidrogenasa/genética , Deficiencia de Glucosafosfato Deshidrogenasa/metabolismo , Homeostasis/fisiología , Humanos , Oxidación-Reducción , Pandemias , Virosis/epidemiología , Virosis/genética , Virosis/metabolismo
2.
Int J Mol Sci ; 21(22)2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33217954

RESUMEN

G6PD is required for embryonic development in animals, as severe G6PD deficiency is lethal to mice, zebrafish and nematode. Lipid peroxidation is linked to membrane-associated embryonic defects in Caenorhabditis elegans (C. elegans). However, the direct link between lipid peroxidation and embryonic lethality has not been established. The aim of this study was to delineate the role of lipid peroxidation in gspd-1-knockdown (ortholog of g6pd) C. elegans during reproduction. tert-butyl hydroperoxide (tBHP) was used as an exogenous inducer. Short-term tBHP administration reduced brood size and enhanced germ cell death in C. elegans. The altered phenotypes caused by tBHP resembled GSPD-1 deficiency in C. elegans. Mechanistically, tBHP-induced malondialdehyde (MDA) production and stimulated calcium-independent phospholipase A2 (iPLA) activity, leading to disturbed oogenesis and embryogenesis. The current study provides strong evidence to support the notion that enhanced lipid peroxidation in G6PD deficiency promotes death of germ cells and impairs embryogenesis in C. elegans.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans , Embrión no Mamífero/metabolismo , Técnicas de Silenciamiento del Gen , Glucosafosfato Deshidrogenasa/genética , Enfermedad del Almacenamiento de Glucógeno Tipo I/metabolismo , Peroxidación de Lípido/efectos de los fármacos , terc-Butilhidroperóxido/farmacología , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Glucosafosfato Deshidrogenasa/metabolismo
3.
FASEB J ; 34(1): 1107-1121, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31914708

RESUMEN

The nucleolus is best known for its cellular role in regulating ribosome production and growth. More recently, an unanticipated role for the nucleolus in innate immunity has recently emerged whereby downregulation of fibrillarin and nucleolar contraction confers pathogen resistance across taxa. The mechanism of this downregulation, however, remains obscure. Here we report that rather than fibrillarin itself being the proximal factor in this pathway, the key player is a fibrillarin-stabilizing deubiquitinylase USP-33. This was discovered by a candidate-gene search of Caenorhabditis elegans in which CED-3 caspase was revealed to execute targeted cleavage of USP-33, thus destabilizing fibrillarin. We also showed that cep-1 and ced-3 mutant worms altered nucleolar size and decreased antimicrobial peptide gene, spp-1, expression rendering susceptibility to bacterial infection. These phenotypes were reversed by usp-33 knockdown, thus linking the CEP-1-CED-3-USP-33 pathway with nucleolar control and resistance to bacterial infection in worms. Parallel experiments with the human analogs of caspases and USP36 revealed similar roles in coordinating these two processes. In summary, our work outlined a conserved cascade that connects cell death signaling to nucleolar control and innate immune response.


Asunto(s)
Infecciones Bacterianas/metabolismo , Caenorhabditis elegans/microbiología , Nucléolo Celular/metabolismo , Enzimas Desubicuitinizantes/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina/metabolismo , Animales , Apoptosis , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Células HeLa , Humanos , Microscopía Fluorescente , Infecciones por Pseudomonas , Interferencia de ARN , Infecciones Estafilocócicas , Estaurosporina/farmacología , Ubiquitina Tiolesterasa/metabolismo
4.
Biomed J ; 41(5): 333-336, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30580798

RESUMEN

Nucleolus is viewed as a plurifunctional center in the cell, tightly linked to ribosome biosynthesis. As a non-membranous structure, how the size of nucleolus is determined is a long outstanding question, and the possibility of "direct size scaling to the nucleus" was raised by genetic studies in fission yeast. Here, we used the model organism Caenorhabditis elegans to test this hypothesis in multi-cellular organisms. We depleted ani-2, ima-3, or C27D9.1 by RNAi feeding, which altered embryo sizes to different extents in ncl-1 mutant worms. DIC imaging provided evidence that in size-altering embryo nucleolar size decreases in small cells and increases in large cells. Furthermore, analyses of nucleolar size in four blastomeres (ABa, ABp, EMS, and P2) within the same embryo of ncl-1 mutants consistently demonstrated the correspondence between cell and nucleolar sizes - the small cells (EMS and P2) have smaller nucleoli in comparison to the large cells (ABa).


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Nucléolo Celular/patología , Proteínas de Microfilamentos/metabolismo , Animales , Nucléolo Celular/metabolismo , Humanos
5.
Sci Rep ; 6: 32021, 2016 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-27535493

RESUMEN

Polyunsaturated fatty acids (PUFAs) exhibit critical functions in biological systems and their importance during animal oocyte maturation has been increasingly recognized. However, the detailed mechanism of lipid transportation for oocyte development remains largely unknown. In this study, the transportation of yolk lipoprotein (lipid carrier) and the rate of lipid delivery into oocytes in live C. elegans were examined for the first time by using coherent anti-Stokes Raman scattering (CARS) microscopy. The accumulation of secreted yolk lipoprotein in the pseudocoelom of live C. elegans can be detected by CARS microscopy at both protein (~1665 cm(-1)) and lipid (~2845 cm(-1)) Raman bands. In addition, an image analysis protocol was established to quantitatively measure the levels of secreted yolk lipoprotein aberrantly accumulated in PUFA-deficient fat mutants (fat-1, fat-2, fat-3, fat-4) and PUFA-supplemented fat-2 worms (the PUFA add-back experiments). Our results revealed that the omega-6 PUFAs, not omega-3 PUFAs, play a critical role in modulating lipid/yolk level in the oocytes and regulating reproductive efficiency of C. elegans. This work demonstrates the value of using CARS microscopy as a molecular-selective label-free imaging technique for the study of PUFA regulation and oocyte development in C. elegans.


Asunto(s)
Caenorhabditis elegans/metabolismo , Ácidos Grasos Insaturados/metabolismo , Lípidos/análisis , Microscopía , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Ácido Graso Desaturasas/deficiencia , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Ácidos Grasos Omega-6/metabolismo , Ácidos Grasos Insaturados/química , Lípidos/química , Lipoproteínas/química , Lipoproteínas/metabolismo , Mutagénesis , Oocitos/crecimiento & desarrollo , Oocitos/metabolismo , Imagen Óptica , Espectrometría Raman , Saco Vitelino/metabolismo
6.
Nucleus ; 7(2): 112-20, 2016 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-27003693

RESUMEN

Exploiting a C. elegans mutant (ncl-1) exhibiting nucleolar abnormalities, we recently identified the let-7/ncl-1/fib-1 genetic cascade underlying proper rRNA abundance and nucleolar size. These 3 factors, let-7 (a miRNA), NCL-1 (a member of the TRIM-NHL family), and fibrillarin (a nucleolar methyltransferase), are evolutionarily conserved across metazoans. In this article, we provide several lines of bioinformatic evidence showing that human and Drosophila homologues of C. elegans NCL-1, TRIM-71 and Brat, respectively, likely act as translational suppressors of fibrillarin. Moreover, since their 3'-UTRs contain putative target sites, they may also be under the control of the let-7 miRNA. We hypothesize that let-7, TRIM and fibrillarin contribute activities in concert, and constitute a conserved network controlling nucleolar size in eukaryotes. We provide an in-depth literature review of various molecular pathways, including the let-7/ncl-1/fib-1 genetic cascade, implicated in the regulation of nucleolar size.


Asunto(s)
Nucléolo Celular , Evolución Molecular , Tamaño de los Orgánulos/genética , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Humanos
7.
PLoS Genet ; 11(10): e1005580, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26492166

RESUMEN

Ribosome biogenesis takes place in the nucleolus, the size of which is often coordinated with cell growth and development. However, how metazoans control nucleolar size remains largely unknown. Caenorhabditis elegans provides a good model to address this question owing to distinct tissue distribution of nucleolar sizes and a mutant, ncl-1, which exhibits larger nucleoli than wild-type worms. Here, through a series of loss-of-function analyses, we report that the nucleolar size is regulated by a circuitry composed of microRNA let-7, translation repressor NCL-1, and a major nucleolar pre-rRNA processing protein FIB-1/fibrillarin. In cooperation with RNA binding proteins PUF and NOS, NCL-1 suppressed the translation of FIB-1/fibrillarin, while let-7 targeted the 3'UTR of ncl-1 and inhibited its expression. Consequently, the abundance of FIB-1 is tightly controlled and correlated with the nucleolar size. Together, our findings highlight a novel genetic cascade by which post-transcriptional regulators interplay in developmental control of nucleolar size and function.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Proteínas Portadoras/genética , Proteínas Cromosómicas no Histona/genética , MicroARNs/genética , ARN Ribosómico/genética , Proteínas Ribosómicas/genética , Ribosomas/genética , Regiones no Traducidas 3' , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Portadoras/metabolismo , Nucléolo Celular/genética , Tamaño de la Célula , Proteínas Cromosómicas no Histona/metabolismo , Femenino , MicroARNs/metabolismo , Imagen Óptica , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Vulva/crecimiento & desarrollo , Vulva/metabolismo
8.
J Biomed Opt ; 19(1): 011011, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23979461

RESUMEN

Lipid is an important energy source and essential component for plasma and organelle membranes in all kinds of cells. Coherent anti-Stokes Raman scattering (CARS) microscopy is a label-free and nonlinear optical technique that can be used to monitor the lipid distribution in live organisms. Here, we utilize CARS microscopy to investigate the pattern of lipid droplets in two live Caenorhabditis elegans mutants (fat-2 and fat-3). The CARS images showed a striking decrease in the size, number, and content of lipid droplets in the fat-2 mutant but a slight difference in the fat-3 mutant as compared with the wild-type worm. Moreover, a nondroplet-like structure with enhanced CARS signal was detected for the first time in the uterus of fat-2 and fat-3 mutants. In addition, transgenic fat-2 mutant expressing a GFP fusion protein of vitellogenin-2 (a yolk lipoprotein) revealed that the enhanced CARS signal colocalized with the GFP signal, which suggests that the nondroplet-like structure is primarily due to the accumulation of yolk lipoproteins. Together, this study implies that CARS microscopy is a potential tool to study the distribution of yolk lipoproteins, in addition to lipid droplets, in live animals.


Asunto(s)
Caenorhabditis elegans/química , Caenorhabditis elegans/metabolismo , Metabolismo de los Lípidos/genética , Microscopía Fluorescente/métodos , Mutación , Espectrometría Raman/métodos , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Ácido Graso Desaturasas/genética , Lípidos/química , Oxazinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...