Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Langmuir ; 30(22): 6602-11, 2014 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-24835108

RESUMEN

Magnetic yolk-shell MSP@ZrO2 microspheres consisting of a movable magnetic supraparticle (MSP) core and a crystalline ZrO2 shell were synthesized via a two-step controlled "sol-gel" approach for the first time. First, a large amount of the generated hydrolyzate Zr(OH)4 was firmly fixed onto the surface of the cross-linked polymethylacrylic acid matrix via a strong hydrogen-bonding interaction between Zr(OH)4 and the carboxyl groups. Then a calcination process was adopted to convert the Zr(OH)4 into a continuous ZrO2 shell and simultaneously make the ZrO2 shell crystallized. At the same time, the polymer matrix could be selectively removed to form a yolk-shell structure, which has better dispersibility and higher adsorbing efficiency of phosphopeptides than its solid counterpart. The formation mechanism of such yolk-shell microspheres could be reasonably proved by the results of TEM, TGA, VSM, XRD, and FT-IR characterization. By taking advantage of the unique properties, the yolk-shell MSP@ZrO2 exhibited high specificity and great capability in selective enrichment of phosphopeptides, and a total of 33 unique phosphopeptides mapped to 33 different phosphoproteins had been identified from 1 mL of human saliva. This result clearly demonstrated that the yolk-shell MSP@ZrO2 has great performance in purifying and identifying the low-abundant phosphopeptides from real complex biological samples. Moreover, the synthetic method can be used to produce hybrid yolk-shell MSP@ZrO2-TiO2.


Asunto(s)
Magnetismo , Microesferas , Fosfopéptidos/química , Fosfopéptidos/síntesis química
2.
Langmuir ; 29(20): 6147-55, 2013 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-23611465

RESUMEN

A new approach for sensitive detection of a specific ssDNA (single-stranded DNA) sequence based on the surface enhanced Raman spectroscopy (SERS) liquid chip is demonstrated. In this method, the probe DNA (targeting to one part of target ssDNA) was attached to the nano-SERS-tags (poly(styrene-co-acrylic acid)/(silver nanoparticles)/silica composite nanospheres), and the capture DNA (targeting to the other part of target ssDNA) was attached to the Fe3O4/poly(acrylic acid) core/shell nanospheres. The nano-SERS-tags with probe DNA were first allowed to undergo hybridization with the target ssDNA in solution to achieve the best efficiency. Subsequently, the magnetic composite nanospheres with capture DNA were added as the capturing substrates of the target ssDNA combined with the nano-SERS-tags. Upon attraction with an external magnet, the nanospheres (including the nano-SERS-tags) were deposited together due to the hybridization, and the deposit sediment was then analyzed by SERS. Quantitative detection of target ssDNA was achieved based on the well-defined linear correlation between the SERS signal intensity and the target ssDNA quantity in the range of 10 nM to 10 pM, and the limit of detection was approximately 10 pM. Multiplexed detection of up to three different ssDNA targets in one sample was demonstrated using three different types of nano-SERS-tags under a single excitation laser. The experimental results indicated that the liquid-phase DNA sequencing method, thus named the SERS liquid chip (SLC) method, holds significant promises for specific detection of trace targets of organisms.


Asunto(s)
ADN de Cadena Simple/análisis , Imanes/química , Nanosferas/química , Resinas Acrílicas/síntesis química , Resinas Acrílicas/química , Tamaño de la Partícula , Espectrometría Raman , Propiedades de Superficie
3.
Nanoscale ; 4(16): 5210-6, 2012 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-22772658

RESUMEN

Highly active surface-enhanced Raman scattering (SERS) substrates of Ag nanoparticle (Ag-NP) modified Fe(3)O(4)@carbon core-shell microspheres were synthesized and characterized. The carbon coated Fe(3)O(4) microspheres were prepared via a one-pot solvothermal method and were served as the magnetic supporting substrates. The Ag-NPs were deposited by in situ reduction of AgNO(3) with butylamine and the thickness of the Ag-NP layer was variable by controlling the AgNO(3) concentrations. The structure and integrity of the Fe(3)O(4)@C@Ag composite microspheres were confirmed by TEM, XRD, VSM and UV-visible spectroscopy. In particular, the Ag-NP coated Fe(3)O(4)@carbon core-shell microspheres were shown to be highly active for SERS detections of pentachlorophenol (PCP), diethylhexyl phthalate (DEHP) and trinitrotoluene (TNT). These analytes are representatives of environmentally persistent organic pollutants with typically low SERS activities. The results suggested that the interactions between the carbon on the microsphere substrates and the aromatic cores of the target molecules contributed to the facile pre-concentration of the analytes near the Ag-NP surfaces.


Asunto(s)
Carbono/química , Contaminantes Ambientales/análisis , Óxido Ferrosoférrico/química , Nanopartículas del Metal/química , Plata/química , Espectrometría Raman , Dietilhexil Ftalato/análisis , Magnetismo , Microesferas , Tamaño de la Partícula , Pentaclorofenol/análisis , Trinitrotolueno/análisis
4.
Langmuir ; 28(28): 10565-72, 2012 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-22712558

RESUMEN

An ultrafast, facile, and efficient microwave hydrothermal approach was designed to fabricate magnetic Fe(3)O(4)/phenol-formaldehyde (PF) core-shell microspheres for the first time. The structure of the Fe(3)O(4)/PF core-shell microspheres could be well controlled by the in situ polycondensation of phenol and formaldehyde with magnetic Fe(3)O(4) clusters as the seeds in an aqueous solution without any surfactants. The effect of synthetic parameters, such as the feeding amounts of phenol, the dosages of formaldehyde, the reaction temperatures, and the microwave heating time, on the morphologies and sizes of the Fe(3)O(4)/PF microspheres were investigated in details. The phenol-formaldehyde shell is found to be evenly coated on Fe(3)O(4) clusters within 10 min of the irradiation. The as-prepared microspheres were highly uniform in morphology, and the method was found to allow the shell thickness to be finely controlled in the range of 10-200 nm. The properties of the composite microspheres were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermogravimetic analysis (TGA), Fourier transform infrared (FT-IR) spectra, X-ray diffraction (XRD), and vibrating sample magnetometer (VSM). The as-prepared Fe(3)O(4)/PF microspheres were monodisperse and highly dispersible in water, ethanol, N,N-dimethyformamide, and acetone, a beneficial quality for the further functionalization and applications of the Fe(3)O(4)/PF microspheres.


Asunto(s)
Formaldehído/química , Microondas , Fenoles/química , Temperatura , Óxido Ferrosoférrico/síntesis química , Óxido Ferrosoférrico/química , Fenómenos Magnéticos , Microesferas , Tamaño de la Partícula , Propiedades de Superficie
5.
ACS Nano ; 6(4): 3179-88, 2012 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-22452444

RESUMEN

Selective enrichment of phosphoproteins or phosphopeptides from complex mixtures is essential for MS-based phosphoproteomics, but still remains a challenge. In this article, we described an unprecedented approach to synthesize magnetic mesoporous Fe(3)O(4)@mTiO(2) microspheres with a well-defined core/shell structure, a pure and highly crystalline TiO(2) layer, high specific surface area (167.1 m(2)/g), large pore volume (0.45 cm(3)/g), appropriate and tunable pore size (8.6-16.4 nm), and high magnetic susceptibility. We investigated the applicability of Fe(3)O(4)@mTiO(2) microspheres in a study of the selective enrichment of phosphopeptides. The experiment results demonstrated that the Fe(3)O(4)@mTiO(2) possessed remarkable selectivity for phosphopeptides even at a very low molar ratio of phosphopeptides/non-phosphopeptides (1:1000), large enrichment capacity (as high as 225 mg/g, over 10 times as that of the Fe(3)O(4)@TiO(2) microspheres), extreme sensitivity (the detection limit was at the fmol level), excellent speed (the enrichment can be completed in less than 5 min), and high recovery of phosphopeptides (as high as 93%). In addition, the high magnetic susceptibility allowed convenient separation of the target peptides by magnetic separation. These outstanding features give the Fe(3)O(4)@mTiO(2) composite microspheres high benefit for mass spectrometric analysis of phosphopeptides.


Asunto(s)
Óxido Ferrosoférrico/química , Microesferas , Nanotecnología/métodos , Fosfopéptidos/química , Titanio/química , Porosidad , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
6.
Langmuir ; 28(6): 3271-8, 2012 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-22288525

RESUMEN

An effective method was developed for synthesizing magnetite/polymer colloidal composite microspheres with controllable variations in size and shape of the nanostructures and desirable interfacial chemical functionalities, using surfactant-free seeded emulsion polymerization with magnetite (Fe(3)O(4)) colloidal nanocrystal clusters (CNCs) as the seed, styrene (St) as the monomer, and potassium persulfate (KPS) as the initiator. The sub-micrometer-sized citrate-acid-stabilized Fe(3)O(4) CNCs were first obtained via ethylene glycol (EG)-mediated solvothermal synthesis, followed by 3-(trimethoxysilyl)propyl methacrylate (MPS) modification to immobilize the active vinyl groups onto the surfaces, and then the hydrophobic St monomers were polymerized at the interfaces to form the polymer shells by seeded emulsion radical polymerization. The morphology of the composite microspheres could be controlled from raspberry- and flower-like shapes, to eccentric structures by simply adjusting the feeding weight ratio of the seed to the monomer (Fe(3)O(4)/St) and varying the amount of cross-linker divinyl benzene (DVB). The morphological transition was rationalized by considering the viscosity of monomer-swollen polymer matrix and interfacial tension between the seeds and polymer matrix. Functional groups, such as carboxyl, hydroxyl, and epoxy, can be facilely introduced onto the composite microspheres through copolymerization of St with other functional monomers. The resultant microspheres displayed a high saturation magnetization (46 emu/g), well-defined core-shell nanostructures, and surface chemical functionalities, as well as a sustained colloidal stability, promising for further biomedical applications.


Asunto(s)
Coloides/química , Óxido Ferrosoférrico/química , Microesferas , Poliestirenos/química , Metacrilatos/química , Nanoestructuras/química , Compuestos de Organosilicio/química , Propiedades de Superficie , Compuestos de Vinilo/química
7.
Langmuir ; 27(23): 14539-44, 2011 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-22011076

RESUMEN

A systematic study for the preparation of Ag nanoparticle (Ag-NP) coated poly(styrene-co-acrylic acid) (PSA) composite nanospheres by in situ chemical reduction is reported. The experimental results showed that the reaction temperature and the surface coverage of the -COOH determined the surface coverage and grain size of Ag nanoparticles on the PSA nanospheres. The surface enhanced Raman spectroscopy (SERS) sensitivity was investigated using 4-hydroxythiophenol (4-HBT) as the model probe in the solution of composite nanospheres stabilized by polyvinylpyrrolidone (PSA/Ag-NPs/PVP), with the detection limit of about 1 × 10(-6) M. Potential application of the new SERS substrate was demonstrated with the detection of melamine, and the detection limit was about 1 × 10(-3) M. Chemical noises from PVP and other impurities were observed and attributed mainly to the competitive adsorption of PVP on the surfaces of Ag-NPs. After tetrahydrofuran washing of the PSA/Ag-NPs/PVP substrates that removed the PVP and other residuals, the signal/noise levels of SERS were greatly improved and the detection limit of melamine was determined to be 1 × 10(-7) M. This result indicated that the new PSA/Ag-NPs system is highly effective and can be used as the SERS-active substrate for trace analysis of a variety of drugs and food additives.


Asunto(s)
Acrilatos/química , Nanopartículas del Metal/química , Poliestirenos/química , Plata/química , Triazinas/análisis , Tamaño de la Partícula , Soluciones , Espectrometría Raman , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA