Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Exp Clin Cancer Res ; 43(1): 116, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637831

RESUMEN

BACKGROUND: Protein arginine methyltransferase 6 (PRMT6) plays a crucial role in various pathophysiological processes and diseases. Glioblastoma (GBM; WHO Grade 4 glioma) is the most common and lethal primary brain tumor in adults, with a prognosis that is extremely poor, despite being less common than other systemic malignancies. Our current research finds PRMT6 upregulated in GBM, enhancing tumor malignancy. Yet, the specifics of PRMT6's regulatory processes and potential molecular mechanisms in GBM remain largely unexplored. METHODS: PRMT6's expression and prognostic significance in GBM were assessed using glioma public databases, immunohistochemistry (IHC), and immunoblotting. Scratch and Transwell assays examined GBM cell migration and invasion. Immunoblotting evaluated the expression of epithelial-mesenchymal transition (EMT) and Wnt-ß-catenin pathway-related proteins. Dual-luciferase reporter assays and ChIP-qPCR assessed the regulatory relationship between PRMT6 and YTHDF2. An in situ tumor model in nude mice evaluated in vivo conditions. RESULTS: Bioinformatics analysis indicates high expression of PRMT6 and YTHDF2 in GBM, correlating with poor prognosis. Functional experiments show PRMT6 and YTHDF2 promote GBM migration, invasion, and EMT. Mechanistic experiments reveal PRMT6 and CDK9 co-regulate YTHDF2 expression. YTHDF2 binds and promotes the degradation of negative regulators APC and GSK3ß mRNA of the Wnt-ß-catenin pathway, activating it and consequently enhancing GBM malignancy. CONCLUSIONS: Our results demonstrate the PRMT6-YTHDF2-Wnt-ß-Catenin axis promotes GBM migration, invasion, and EMT in vitro and in vivo, potentially serving as a therapeutic target for GBM.


Asunto(s)
Glioblastoma , Glioma , Animales , Ratones , Glioblastoma/patología , beta Catenina/genética , beta Catenina/metabolismo , Activación Transcripcional , Ratones Desnudos , Línea Celular Tumoral , Factores de Transcripción/metabolismo , Glioma/patología , Vía de Señalización Wnt , Transición Epitelial-Mesenquimal/genética , Proliferación Celular/genética , Movimiento Celular , Regulación Neoplásica de la Expresión Génica
2.
Biomed Pharmacother ; 173: 116410, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38460373

RESUMEN

An expanding corpus of research robustly substantiates the complex interrelation between gut microbiota and the onset, progression, and metastasis of colorectal cancer. Investigations in both animal models and human subjects have consistently underscored the role of gut bacteria in a variety of metabolic activities, driven by dietary intake. These activities include amino acid metabolism, carbohydrate fermentation, and the generation and regulation of bile acids. These metabolic derivatives, in turn, have been identified as significant contributors to the progression of colorectal cancer. This thorough review meticulously explores the dynamic interaction between gut bacteria and metabolites derived from the breakdown of amino acids, fatty acid metabolism, and bile acid synthesis. Notably, bile acids have been recognized for their potential carcinogenic properties, which may expedite tumor development. Extensive research has revealed a reciprocal influence of gut microbiota on the intricate spectrum of colorectal cancer pathologies. Furthermore, strategies to modulate gut microbiota, such as dietary modifications or probiotic supplementation, may offer promising avenues for both the prevention and adjunctive treatment of colorectal cancer. Nevertheless, additional research is imperative to corroborate these findings and enhance our comprehension of the underlying mechanisms in colorectal cancer development.


Asunto(s)
Neoplasias Colorrectales , Microbioma Gastrointestinal , Animales , Humanos , Microbioma Gastrointestinal/fisiología , Bacterias/metabolismo , Carcinogénesis , Ácidos y Sales Biliares/metabolismo , Neoplasias Colorrectales/microbiología
3.
DNA Cell Biol ; 41(4): 400-409, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35262384

RESUMEN

Corneal fibrosis is a complication of severe corneal injury, one of the major causes of vision loss. The formation of myofibroblasts has emerged as a key stimulative factor of corneal fibrosis. In the current study, we focused on the role of LINC00963 in regulating corneal fibrosis. Transforming growth factor ß1 (TGF-ß1) was used to induce human corneal stromal cells differentiating into corneal myofibroblasts, and the significant increase of α-smooth muscle actin (α-SMA) was verified by quantitative real-time PCR (qRT-PCR), western blot, and immunofluorescence, respectively. LINC00963 was identified to be one-half decreased compared with nonstimulated human corneal stromal cells, indicating that it might play a role in corneal fibrosis. Interestingly, overexpression of LINC00963 resulted in decreased formation of myofibroblasts indicating that it might exhibit an inhibiting effect. Moreover, bioinformatics tool was applied to predict the downstream target of LINC00963. We investigated that LINC00963 suppressed α-SMA induced by TGF-ß1 in corneal fibroblasts, at least in part, by downregulating the expression of miR-143-3p. In addition, either LINC00963 promotion or miR-143-3p inhibition could significantly decrease myofibroblast contractility and collagen I and III secretion, which are the key to contribute to corneal fibrosis. Taken together, our study identified LINC00963 as a promising therapeutic target.


Asunto(s)
Lesiones de la Cornea , MicroARNs , ARN Largo no Codificante , Actinas/genética , Actinas/metabolismo , Células Cultivadas , Cicatriz/metabolismo , Lesiones de la Cornea/genética , Lesiones de la Cornea/metabolismo , Fibroblastos/metabolismo , Fibrosis , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Factor de Crecimiento Transformador beta1/farmacología
4.
AMB Express ; 7(1): 30, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28144888

RESUMEN

A total of ten marine yeast strains isolated from Bohai Sea, Northern China were identified to be members of three genera Rhodosporidium, Rhodotorula, and Cryptococcus. Two representative strains Rhodosporidium TJUWZ4 and Cryptococcus TJUWZA11 with high lipid content based on Nile red staining method were further characterized. A wide range of culture conditions (C and N sources, pH, temperature, salinity and C/N ratio) were tested to characterize the biomass and lipid production (yield and productivity) of these strains. Results indicated that Rhodosporidium TJUWZ4 was capable of achieving lipid yield up to 44% and 0.09 g/l-h productivity on glucose and peptone medium at pH 4, 20 °C, 30% salinity, and C/N 80. Three fatty acids, namely oleic acid (18:1), palmitic acid (C16:0) and linoleic acid (18:2) were the major intracellular fatty acids, which accounted for 90% of total lipids. With promising features for intracellular lipid accumulation, Rhodosporidium TJUWZ4 is a robust strain with great potentials for application in biodiesel production from renewable feedstocks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...