Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hortic Res ; 10(5): uhad065, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37249951

RESUMEN

Hazelnut (Corylus spp.) is known as one of the four famous tree nuts in the world due to its pleasant taste and nutritional benefits. However, hazelnut promotion worldwide is increasingly challenged by global climate change, limiting its production to a few regions. Focusing on the eurytopic Section Phyllochlamys, we conducted whole-genome resequencing of 125 diverse accessions from five geo-ecological zones in Eurasia to elucidate the genomic basis of adaptation and improvement. Population structure inference outlined five distinct genetic lineages corresponding to climate conditions and breeding background, and highlighted the differentiation between European and Asian lineages. Demographic dynamics and ecological niche modeling revealed that Pleistocene climatic oscillations dominantly shaped the extant genetic patterns, and multiple environmental factors have contributed to the lineage divergence. Whole-genome scans identified 279, 111, and 164 selective sweeps that underlie local adaptation in Corylus heterophylla, Corylus kweichowensis, and Corylus yunnanensis, respectively. Relevant positively selected genes were mainly involved in regulating signaling pathways, growth and development, and stress resistance. The improvement signatures of hybrid hazelnut were concentrated in 312 and 316 selected genes, when compared to C. heterophylla and Corylus avellana, respectively, including those that regulate protein polymerization, photosynthesis, and response to water deprivation. Among these loci, 22 candidate genes were highly associated with the regulation of biological quality. Our study provides insights into evolutionary processes and the molecular basis of how sibling species adapt to contrasting environments, and offers valuable resources for future climate-resilient breeding.

2.
Materials (Basel) ; 16(4)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36837206

RESUMEN

The combined utilization of mineral accelerators and nano-seeding materials is a novel method to promote the early strength of cement-based materials. In this paper, the effects of nano-C-S-H seed (NCS) on the early compressive strength of the Portland cement (PC)- calcium sulfoaluminate cement (CSA) binder were investigated. The results showed that NCS and CSA synergistically contributed to the early strength of PC. In detail, a 326.3% increase in the 10 h compressive strength of PC paste was obtained through the addition of NCS (2 wt%) and CSA (5%) in common. This was higher than the sum of the increases observed with the single additions of CSA (157.9%) or NCS (87.6%), with the same above dosage, in PC. Meanwhile, the early strength enhancement effects of NCS and CSA, when used together in PC, lasted longer than the effects of either used alone. Moreover, the synergetic effect mechanism was analyzed by isothermal calorimeter, QXRD, TGA, MIP, and SEM techniques. The calorimetry, XRD, and TGA results demonstrated that the synergistic mechanism was associated with the synergistic promotion effects of CSA and NCS on the hydrates. The fast hydration of CSA produced large amounts of ettringite and also consumed partial free water to promote the performance of the seeding effect of NCS which, simultaneously, further accelerated the precipitation of C-S-H gel and CH. The high alkie environment was also beneficial for the continuous generation of ettringite. In addition, the results of MIP and SEM measurements showed that the micro-filling effect of NCS significantly optimized the pore structure of a PC-CSA blend-hardened paste. Thus, the synergistic strength enhancement effects of CSA and NCS on PC were attributed to the matching of the promotion of hydration generation and the optimization of pore structures in hardening cement paste. The results of this article provide a new approach to achieving the rapid development of the early strength of cementitious materials, with potential applications in precast concrete and low-temperature construction.

3.
BMC Plant Biol ; 22(1): 611, 2022 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-36566190

RESUMEN

BACKGROUND: Betulaceae is a relatively small but morphologically diverse family, with many species having important economic and ecological values. Although plastome structure of Betulaceae has been reported sporadically, a comprehensive exploration for plastome evolution is still lacking. Besides, previous phylogenies had been constructed based on limited gene fragments, generating unrobust phylogenetic framework and hindering further studies on divergence ages, biogeography and character evolution. Here, 109 plastomes (sixteen newly assembled and 93 previously published) were subject to comparative genomic and phylogenomic analyses to reconstruct a robust phylogeny and trace the diversification history of Betulaceae. RESULTS: All Betulaceae plastomes were highly conserved in genome size, gene order, and structure, although specific variations such as gene loss and IR boundary shifts were revealed. Ten divergent hotspots, including five coding regions (Pi > 0.02) and five noncoding regions (Pi > 0.035), were identified as candidate DNA barcodes for phylogenetic analysis and species delimitation. Phylogenomic analyses yielded high-resolution topology that supported reciprocal monophyly between Betula and Alnus within Betuloideae, and successive divergence of Corylus, Ostryopsis, and Carpinus-Ostrya within Coryloideae. Incomplete lineage sorting and hybridization may be responsible for the mutual paraphyly between Ostrya and Carpinus. Betulaceae ancestors originated from East Asia during the upper Cretaceous; dispersals and subsequent vicariance accompanied by historical environment changes contributed to its diversification and intercontinental disjunction. Ancestral state reconstruction indicated the acquisition of many taxonomic characters was actually the results of parallel or reversal evolution. CONCLUSIONS: Our research represents the most comprehensive taxon-sampled and plastome-level phylogenetic inference for Betulaceae to date. The results clearly document global patterns of plastome structural evolution, and established a well-supported phylogeny of Betulaceae. The robust phylogenetic framework not only provides new insights into the intergeneric relationships, but also contributes to a perspective on the diversification history and evolution of the family.


Asunto(s)
Corylus , Fagales , Filogenia , Betulaceae , Betula , Evolución Molecular
4.
Front Plant Sci ; 13: 800768, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35300011

RESUMEN

Self-incompatibility (SI) protects plants from inbreeding depression due to self-pollination and promotes the outcrossing process to maintain a high degree of heterozygosity during evolution. Corylus is an important woody oil and nut species that shows sporophytic SI (SSI). Yet the molecular mechanism of SI in Corylus remains largely unknown. Here we conducted self- ("Dawei" × "Dawei") and cross-pollination ("Dawei" × "Liaozhen No. 7") experiments and then performed an RNA-Seq analysis to investigate the mechanism of pollen-stigma interactions and identify those genes that may be responsible for SSI in Corylus. We uncovered 19,163 up- and 13,314 downregulated genes from the comparison of different pollination treatments. These differentially expressed genes (DEGs) were significantly enriched in plant-pathogen interaction, plant hormone signal transduction, and MAPK signaling pathway-plant. We found many notable genes potentially involved in pollen-stigma interactions and SSI mechanisms, including genes encoding receptor-like protein kinases (RLK), calcium-related genes, disease-resistance genes, and WRKY transcription factors. Four upregulated and five downregulated DEGs were consistently identified in those comparison groups involving self-incompatible pollination, suggesting they had important roles in pollen-pistil interactions. We further identified the S-locus region of the Corylus heterophylla genome based on molecular marker location. This predicted S-locus contains 38 genes, of which 8 share the same functional annotation as the S-locus genes of Corylus avellana: two PIX7 homologous genes (EVM0002129 and EVM0025536), three MIK2 homologous genes (EVM0002422, EVM0005666, and EVM0009820), one aldose 1-epimerase (EVM0002095), one 3-dehydroquinate synthase II (EVM0021283), and one At3g28850 homologous gene (EVM0016149). By characterizing the pistil process during the early postpollination phase via transcriptomic analysis, this study provides new knowledge and lays the foundation for subsequent analyses of pollen-pistil interactions.

5.
Mol Phylogenet Evol ; 168: 107413, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35031460

RESUMEN

Historical geo-climatic changes have shaped the geographical distributions and genetic diversity of numerous plant taxa in East Asia, which promote species divergence and ultimately speciation. Here, we integrated multiple approaches, including molecular phylogeography, ecological niche modeling, and morphological traits to examine the nucleotide diversity and interspecific divergence within Corylus heterophylla complex (C. heterophylla, C. kweichowensis, and C. yunnanensis). These three sibling taxa harbored similar high levels of nucleotide diversity at the species level. The molecular data (SCNG and cpDNA) unanimously supported the division of C. heterophylla complex into two major clades, with C. yunnanensis diverged earlier from the complex, whereas C. heterophylla and C. kweichowensis could hardly be separated. The split between the two clades (c. 12.89 Ma) coincided with the formation of Sichuan Basin in the middle Miocene, while the divergence among and within the five subclades (YUN1-YUN3, HK1-HK2) occurred from the late Miocene to the Pleistocene. C. heterophylla of northern China experienced glacial contraction and interglacial expansion during the Quaternary, whereas C. kweichowensis and C. yunnanensis of southern China presented population expansion even during the last glacial maximum. Despite of high levels of genetic admixture between C. heterophylla and C. kweichowensis, significant ecological and morphological discrepancy as well as incomplete geographic isolation indicated that adaptive evolution triggered by divergent selection may have played important roles in incipient ecological speciation.


Asunto(s)
Corylus , Corylus/genética , ADN de Cloroplastos/genética , Ecosistema , Variación Genética , Filogenia , Filogeografía
6.
Front Plant Sci ; 12: 749871, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34956257

RESUMEN

Hazelnut has gained economic value in China in recent years, but its large-scale planting and research started later than other countries. Conducting basic research on hazelnut trees requires studying their related microorganisms. Here, we used high-throughput DNA sequencing to quantify the fungal communities in the root endospheres and rhizosphere soil of four hazelnut species. Fungal diversity in the rhizosphere soil was significantly higher than that in the root endospheres. Rhizosphere soil had more Mortierellomycota, and the fungal community compositions differed among the four hazelnut species. The root endospheres, especially those of the Ping'ou (Corylus heterophylla × Corylus avellana) trees, contained more ectomycorrhizal fungi. The co-occurrence networks in the rhizosphere soil were more sophisticated and stable than those in the root endospheres, even when the root endospheres had higher modularity, because the structural differentiation of the root endospheres differed from that of the rhizosphere soil. Two-factor correlation network analysis and linear regression analysis showed that the total organic carbon was the main environmental factor affecting the fungal communities. Our study revealed the community compositions, functional predictions, and co-occurrence network structural characteristics of fungi in hazelnut root endospheres and rhizosphere soil. We also examined the potential keystone taxa, and analyzed the environmental factors of the dominant fungal community compositions. This study provides guidance for the growth of hazelnut and the management of hazelnut garden, and provides an insight for future development of fungal inoculants to be used in hazelnut root.

7.
Microorganisms ; 9(11)2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34835354

RESUMEN

Hazelnut is one of the four major nuts in the world and has high nutritional and economic value. This study employed Illumina sequencing of ITS rDNA and 16S rRNA genes to identify the seasonal changes in soil microbial community, the predominant environmental factors driving microbial community composition, and the differences in soil microbial composition among different species of the genus Corylus. We found that the soil microbial community composition of species of Corylus changed significantly with the change in seasons. Corylus heterophylla and Corylus kweichowensis had more ectomycorrhiza in their soil compared to Corylus avellane. The main factor influencing fungal community composition in soil was the available potassium, while that of bacteria was the total phosphorus content. Co-occurrence network analysis revealed that the ratio of positive interaction to negative interaction in soil of C. heterophylla and Ping'ou (C. heterophylla × C. avellane) was higher, while the negative interaction of soil community structure in C. avellane was greater. The bacterial community was more stable than the fungal community according to microbial diversity and co-occurrence network analyses. The findings of this research may facilitate improvements to the production and soil system management in hazel planting processes.

8.
Front Plant Sci ; 12: 652493, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33841481

RESUMEN

Living cover is an important management measure for orchards in China, and has certain influences on soil properties, microorganisms, and the micro-ecological environment. However, there are few studies on the effects of living cover on the soil changes in hazelnut orchards. In this study, we compared the soils of living cover treatments with Vulpia myuros and the soils of no cover treatments, and analyzed the observed changes in soil properties, microorganisms, and microbial functions by using high-throughput ITS rDNA and 16S rRNA gene Illumina sequencing. The results demonstrated that the total organic carbon content in the 20-40 cm deep soils under the living cover treatments increased by 32.87 and 14.82% in May and July, respectively, compared with those under the no cover treatments. The living cover treatment with V. myuros also significantly increased the contents of total phosphorus (TP), total nitrogen (TN), available phosphorus (AP), and available potassium (AK) in the soil samples. Moreover, the influence of seasons was not as significant as that of soil depth. The living cover treatment also significantly improved the soil enzyme activity levels. The results demonstrated that Ascomycota, Mortierellomycota and Basidiomycota were the dominant fungal phyla in all samples, while Proteobacteria, Actinobacteria, Acidobacteria, Firmicutes, and Chloroflexi were the dominant bacterial phyla, but the different treatments impacted the compositions of fungal and bacterial communities. Principal component analysis (PCA) showed that living cover with V. myuros significantly changed the soil fungal community structures whereas the bacterial community structures may be more sensitive to seasonal changes. At the microbial functional level, the living cover treatment increased the fungal operational taxonomic units (OTUs) of symbiotrophs and decreased that of pathotrophs. According to this study, we believe that the application of a living cover with V. myuros has a favorable regulating influence on soil properties, microbial communities and microbial function. This treatment can also reduce the use of herbicides, reduce the cost of orchard management, and store more carbon underground to achieve sustainable intensification of production in hazelnut orchards, so it can be considered as a management measure for hazelnut orchards.

9.
Gigascience ; 10(4)2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33871007

RESUMEN

BACKGROUND: Corylus heterophylla Fisch. is a species of the Betulaceae family native to China. As an economically and ecologically important nut tree, C. heterophylla can survive in extremely low temperatures (-30 to -40 °C). To deepen our knowledge of the Betulaceae species and facilitate the use of C. heterophylla for breeding and its genetic improvement, we have sequenced the whole genome of C. heterophylla. FINDINGS: Based on >64.99 Gb (∼175.30×) of Nanopore long reads, we assembled a 370.75-Mb C. heterophylla genome with contig N50 and scaffold N50 sizes of 2.07 and 31.33 Mb, respectively, accounting for 99.23% of the estimated genome size (373.61 Mb). Furthermore, 361.90 Mb contigs were anchored to 11 chromosomes using Hi-C link data, representing 97.61% of the assembled genome sequences. Transcriptomes representing 4 different tissues were sequenced to assist protein-coding gene prediction. A total of 27,591 protein-coding genes were identified, of which 92.02% (25,389) were functionally annotated. The phylogenetic analysis showed that C. heterophylla is close to Ostrya japonica, and they diverged from their common ancestor ∼52.79 million years ago. CONCLUSIONS: We generated a high-quality chromosome-level genome of C. heterophylla. This genome resource will promote research on the molecular mechanisms of how the hazelnut responds to environmental stresses and serves as an important resource for genome-assisted improvement in cold and drought resistance of the Corylus genus.


Asunto(s)
Corylus , Cromosomas , Corylus/genética , Anotación de Secuencia Molecular , Filogenia , Fitomejoramiento
10.
PeerJ ; 7: e6320, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30701138

RESUMEN

BACKGROUND: Previous phylogenetic conclusions on the family Betulaceae were based on either morphological characters or traditional single loci, which may indicate some limitations. The chloroplast genome contains rich polymorphism information, which is very suitable for phylogenetic studies. Thus, we sequenced the chloroplast genome sequences of three Betulaceae species and performed multiple analyses to investigate the genome variation, resolve the phylogenetic relationships, and clarify the divergence history. METHODS: Chloroplast genomes were sequenced using the high-throughput sequencing. A comparative genomic analysis was conducted to examine the global genome variation and screen the hotspots. Three chloroplast partitions were used to reconstruct the phylogenetic relationships using Maximum Likelihood and Bayesian Inference approaches. Then, molecular dating and biogeographic inferences were conducted based on the whole chloroplast genome data. RESULTS: Betulaceae chloroplast genomes consisted of a small single-copy region and a large single copy region, and two copies of inverted repeat regions. Nine hotspots can be used as potential DNA barcodes for species delimitation. Phylogenies strongly supported the division of Betulaceae into two subfamilies: Coryloideae and Betuloideae. The phylogenetic position of Ostryopsis davidiana was controversial among different datasets. The divergence time between subfamily Coryloideae and Betuloideae was about 70.49 Mya, and all six extant genera were inferred to have diverged fully by the middle Oligocene. Betulaceae ancestors were probably originated from the ancient Laurasia. DISCUSSIONS: This research elucidates the potential of chloroplast genome sequences in the application of developing molecular markers, studying evolutionary relationships and historical dynamic of Betulaceae.It also reveals the advantages of using chloroplast genome data to illuminate those phylogenies that have not been well solved yet by traditional approaches in other plants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...