Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PeerJ ; 8: e8377, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31998558

RESUMEN

Forest plantation, either through afforestation or reforestation, has been suggested to reverse and mitigate the process of deforestation. However, uncertainties remain in the potential of plantation forest (PF) to sequestrate carbon (C) and nitrogen (N) compared to natural forest (NF). Soil C and N stocks require a critical and updated look at what is happening especially in the context of increasing rate of land use change and climate change. The current study was conducted in China's Eastern forest to estimate soil C and N stocks in six depth layers (0-10, 10-20, 20-40, 40-60, 60-80 and 80-100 cm) and two forest types (NF and PF) at four sites along climate factors gradient. The results showed that the overall mean soil C and N amounts to a depth of 20 cm ranged from 2.6 ± 1.1 Mg ha-1 to 38.6 ± 23.1 Mg ha-1, and soil nitrogen stock ranged from 0.2 ± 0.1 Mg ha-1 to 3.3 ± 1.5 Mg ha-1. Moreover, a loss of C stock was observed at Qingyuan (QY) by -7%, Dinghushan (DH) by -26%, Jianfengling (JF) by -13% while that of N stock was observed at QY (-8%), DH (-19%) and JF (-12%) at both depth layers. These results indicate that NFs have a better capacity to accumulate soil C and N. The soil C and N decreased from the southeast to the northeast and increased from tropical to temperate mixed forests zone in the eastern part of the study area. The C and N stock mainly occurred in the topsoil and decreased significantly with depth. Moreover, soil C and N stocks increased with age of plantation. This study provides an overview of the current spatial distribution and soil stocks of C and N, as well as the effects of environmental factors on soil C and N stocks. It also indicated that, although mean annual temperature and mean annual precipitation are the key factors affecting the variations in soil C and N, their vertical and horizontal distribution differed in various aspects.

2.
Sci Rep ; 9(1): 16516, 2019 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-31712657

RESUMEN

Soil C and N turnover rates and contents are strongly influenced by climates (e.g., mean annual temperature MAT, and mean annual precipitation MAP) as well as human activities. However, the effects of converting natural forests to intensively human-managed plantations on soil carbon (C), nitrogen (N) dynamics across various climatic zones are not well known. In this study, we evaluated C, N pool and natural abundances of δ13C and δ15N in forest floor layer and 1-meter depth mineral soils under natural forests (NF) and plantation forest (PF) at six sites in eastern China. Our results showed that forest floor had higher C contents and lower N contents in PF compared to NF, resulting in high forest floor C/N ratios and a decrease in the quality of organic materials in forest floor under plantations. In general, soil C, N contents and their isotope changed significantly in the forest floor and mineral soil after land use change (LUC). Soil δ13C was significantly enriched in forest floor after LUC while both δ13C and δ15N values were enriched in mineral soils. Linear and non-linear regressions were observed for MAP and MAT in soil C/N ratios and soil δ13C, in their changes with NF conversion to PF while soil δ15N values were positively correlated with MAT. Our findings implied that LUC alters soil C turnover and contents and MAP drive soil δ13C dynamic.

3.
Ying Yong Sheng Tai Xue Bao ; 30(9): 2955-2963, 2019 Sep.
Artículo en Chino | MEDLINE | ID: mdl-31529870

RESUMEN

Light is a key factor affecting seed germination and seedling growth. In this study, seed germination and seedling growth of Cunninghamia lanceolata and Schima superba were compared under controlled conditions with five light treatments (100%, 60%, 40%, 15% and 5% of full sunlight). The results showed that light intensity significantly impacted seed germination and seedling growth of both species. With decreasing light intensity, the germination rate and germination index of C. lanceolata increased, while those of S. superba showed a trend which increased first and then decreased, with the maximum at 40% light intensity. The seedling survival rate of both species was 0 under full sunlight, while significantly decreased with decreasing light intensity from 60% to 5%. Root length, basal stem diameter and height showed a consistent trend with the change of light availability in both species. Root length significantly decreased, basal stem diameter and height increased first and then decreased with decreasing light intensity, with the minimum at 5% light intensity. With decreasing light intensity, root biomass, stem biomass, leaf biomass and total biomass of C. lanceolata seedlings declined, while high biomass accumulation of S. superba seedlings were observed in 15%-60% light intensities, and lowest at 5% light intensity. Biomass accumulation in each organ of S. superba seedlings was greater than that of C. lanceolata seedlings under the same light intensity. High stem biomass and leaf biomass, low root biomass and root to shoot ratio were a phenotypic response to low light intensity in C. lanceolata and S. superba seedlings grown under poor light condition. The growth of C. lanceolata is better under relatively high light intensity than S. superba. Whereas S. superba is moderately shade-tolerant at the seedling stage, thus is more suitable for planting under closed canopy.


Asunto(s)
Cunninghamia/fisiología , Germinación/fisiología , Plantones/crecimiento & desarrollo , Theaceae , Semillas
4.
Ying Yong Sheng Tai Xue Bao ; 27(12): 3845-3852, 2016 Dec.
Artículo en Chino | MEDLINE | ID: mdl-29704342

RESUMEN

The effect of light intensity on the seed germination and seedling growth of Chinese fir under different light intensities (100%, 40%, 20%, 10%, 5% of full light, and the PPFD was 201.3, 77.0, 37.5, 19.2, 9.8 µmol·m-2·s-1, respectively) was investigated, and the adaptive strategy of seed germination, seedling survival, growth, morphological plasticity, biomass accumulation and allocation under different light intensities was explored in this paper. The results showed that light intensity significantly affected the germination rate, survival rate, establishment rate and germination index. Germination rate reached the maximum under 40% light intensity, while survival rate and establishment rate reached the maximum at 100% light intensity. With the light intensity decreased, the stem length increased, while the root length, cotyledon length, cotyledon thickness and euphylla number declined, and basal stem diameter had no significant difference among diffe-rent light intensities. The total biomass, root biomass, stem biomass and leaf biomass were the highest under 100% light intensity. With the light intensity decreased, the photosynthesis non-photosynthesis biomass ratio and leaf biomass ratio declined, while stem biomass ratio increased, the root to shoot ratio and root biomass ratio had no significant difference among different light intensities. Low light promoted seed germination, but seedlings grew slowly with high mortality under low light. The accumulation of biomass in stem increased the plant tolerance to low light.


Asunto(s)
Cunninghamia/efectos de la radiación , Germinación , Luz , Plantones/efectos de la radiación , Semillas/efectos de la radiación , Biomasa , Cunninghamia/crecimiento & desarrollo , Fotosíntesis , Hojas de la Planta , Raíces de Plantas , Tallos de la Planta , Plantones/crecimiento & desarrollo
5.
J Environ Sci (China) ; 16(1): 86-9, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-14971458

RESUMEN

The CO2 in the atmosphere is in contact with water vapor and rain droplets forming CO2 x H2O, HCO3- and CO3(2-) . Global precipitation is about 505 x 1015 kg/a. Based on theoretical calculation for unpolluted air and measurement observations, we estimated that 100-270 x 10(12) gC/a are scavenged from the air by global precipitation. This roughly equals carbon emissions from volcanic sources or 2-6 per cent of current CO2 emissions. An inventory-based estimate on carbon removal in northwestern Europe supports the above calculation on global scale. With increasing CO2 concentration in the air, precipitation scavenging may increase.


Asunto(s)
Dióxido de Carbono/análisis , Modelos Teóricos , Lluvia , Atmósfera , Solubilidad , Volatilización , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...