Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Rice (N Y) ; 17(1): 40, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888627

RESUMEN

Polyploid is considered an advantage that has evolved to be more environmentally adaptable than its diploid. To understand if doubled chromosome of diploid rice can improve drought tolerance, we evaluated the diploid (2X) and autotetraploid (4X) plants of three indica and three japonica varieties. Drought stress in the plastic bucket of four-leaf stage revealed that the drought tolerance of 4X plants was lower than that of its diploid donor plants. The assay of photosynthetic rate of all varieties showed that all 4X varieties had lower rates than their diploid donors. The capacity for reactive oxygen species production and scavenging varied among different 2X and 4X varieties. Further, transcriptomic analysis of 2X and 4X plants of four varieties under normal and drought condition showed that the wide variation of gene expression was caused by difference of varieties, not by chromosome ploidy. However, weighted gene co-expression network analysis (WGCNA) revealed that the severe interference of photosynthesis-related genes in tetraploid plants under drought stress is the primary reason for the decrease of drought tolerance in autotetraploid lines. Consistently, new transcripts analysis in autotetraploid revealed that the gene transcription related with mitochondrion and plastid of cell component was influenced most significantly. The results indicated that chromosome doubling of diploid rice weakened their drought tolerance, primarily due to disorder of photosynthesis-related genes in tetraploid plants under drought stress. Maintain tetraploid drought tolerance through chromosome doubling breeding in rice needs to start with the selection of parental varieties and more efforts.

2.
Opt Express ; 32(9): 14904-14913, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38859154

RESUMEN

Nonlocality is the defining feature of quantum entanglement. Entangled states with multiple particles are of crucial importance in fundamental tests of quantum physics as well as in many quantum information tasks. One of the archetypal multipartite quantum states, Greenberger-Horne-Zeilinger (GHZ) state, allows one to observe the striking conflict of quantum physics to local realism in the so-called all-versus-nothing way. This is profoundly different from Bell's theorem for two particles, which relies on statistical predictions. Here, we demonstrate an integrated photonic chip capable of generating and manipulating the four-photon GHZ state. We perform a complete characterization of the four-photon GHZ state using quantum state tomography and obtain a state fidelity of 0.729±0.006. We further use the all-versus-nothing test and the Mermin inequalities to witness the quantum nonlocality of GHZ entanglement. Our work paves the way to perform fundamental tests of quantum physics with complex integrated quantum devices.

3.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167136, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38531483

RESUMEN

Farnesoid X receptor (FXR) improves the function of islets, especially in the setting of Roux-en-Y gastric bypass (RYGB). Here we investigated how FXR activation regulates ß-cell proliferation and explored the potential link between FXR signaling and the menin pathway in controlling E2F3 expression, a key transcription factor for controlling adult ß-cell proliferation. Stimulation with the FXR agonist GW4064 or chenodeoxycholic acid (CDCA) increased E2F3 expression and ß-cell proliferation. Consistently, E2F3 knockdown abolished GW4064-induced proliferation. Treatment with GW4064 increased E2F3 expression in ß-cells via enhancing Steroid receptor coactivator-1 (SRC1) recruitment, increasing the pro-transcriptional acetylation of histone H3 at the E2f3 promoter. GW4064 treatment also decreased the association between FXR and menin, leading to the induction of FXR-mediated SRC1 recruitment. Mimicking the impact of FXR agonists, RYGB also increased E2F3 expression and ß-cell proliferation in GK rats and SD rats. These findings unravel the crucial role of the FXR/menin signaling in epigenetically controlling E2F3 expression and ß-cell proliferation, a mechanism possibly underlying RYGB-induced ß-cell proliferation.


Asunto(s)
Proliferación Celular , Factor de Transcripción E2F3 , Epigénesis Genética , Células Secretoras de Insulina , Receptores Citoplasmáticos y Nucleares , Animales , Ratas , Proliferación Celular/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/agonistas , Receptores Citoplasmáticos y Nucleares/genética , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Masculino , Factor de Transcripción E2F3/metabolismo , Factor de Transcripción E2F3/genética , Ratas Wistar , Histonas/metabolismo , Isoxazoles/farmacología , Transducción de Señal/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patología
4.
Genet Mol Biol ; 47(1): e20230068, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38314883

RESUMEN

Comprehensive protein-protein interaction (PPI) maps are critical for understanding the functional organization of the proteome, but challenging to produce experimentally. Here, we developed a computational method for predicting PPIs based on protein docking. Evaluation of performance on benchmark sets demonstrated the ability of the docking-based method to accurately identify PPIs using predicted protein structures. By employing the docking-based method, we constructed a structurally resolved PPI network consisting of 24,653 interactions between 2,131 proteins, which greatly extends the current knowledge on the rice protein-protein interactome. Moreover, we mapped the trait-associated single nucleotide polymorphisms (SNPs) to the structural interactome, and computationally identified 14 SNPs that had significant consequences on PPI network. The protein structural interactome map provided a resource to facilitate functional investigation of PPI-perturbing alleles associated with agronomically important traits in rice.

5.
Mol Biol Rep ; 51(1): 123, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38227062

RESUMEN

BACKGROUND: Roux-en-Y gastric bypass surgery (RYGB) improves glucose-stimulated insulin secretion (GSIS) in type 2 diabetes (T2D) patients. SNAP25 plays an essential role in GSIS. Clinical studies indicate that enhanced GLP-1 signaling is an important contributor to the improved ß-cell function in T2D. We aimed to explore whether GLP-1-regulated SNAP25 is involved in the enhanced secretory function of ß-cells in diabetic Goto-Kakizaki (GK) rats after RYGB. METHODS AND RESULTS: RYGB or sham surgery was conducted in GK rats. mRNA and protein expression of SNAP25 was assessed by qPCR and Western blot, respectively. Occupancy of CREB and acetyltransferase CBP and acetylation of histone H3 (ACH3) at the Snap25 promoter were determined using ChIP assay. RYGB led to increased SNAP25 expression and CREB phosphorylation in islets from GK rats. Increased SNAP25 improved GSIS in ß-cells cultured in high glucose conditions. Consistent with increased plasma GLP-1 after RYGB, GLP-1R agonist exendin4 increased SNAP25 expression and CREB phosphorylation in ß-cells. Mechanistically, exendin4 promoted the recruitment of CREB and CBP, thereby increasing ACH3 at the Snap25 promoter. Consistently, inhibition of CBP attenuated the effect of exendin4 on SNAP25 expression. Furthermore, the knockdown of SNAP25 diminished the increase of GSIS potentiated by chronic GLP-1 culture in INS-1 832/13 cells. CONCLUSIONS: Our findings unravel the novel mechanisms of RYGB-enhanced SNAP25 expression in ß-cells, and SNAP25 may contribute to the improved ß-cell secretory function induced by RYGB.


Asunto(s)
Diabetes Mellitus Tipo 2 , Derivación Gástrica , Secreción de Insulina , Proteína 25 Asociada a Sinaptosomas , Animales , Ratas , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/cirugía , Péptido 1 Similar al Glucagón/metabolismo , Glucosa , Histonas , Proteína 25 Asociada a Sinaptosomas/genética
6.
Biochim Biophys Acta Mol Cell Res ; 1871(2): 119655, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38135007

RESUMEN

Farnesoid X receptor (FXR) is a nuclear ligand-activated receptor of bile acids that plays a role in the modulation of insulin content. However, the underlying molecular mechanisms remain unclear. Forkhead box a2 (Foxa2) is an important nuclear transcription factor in pancreatic ß-cells and is involved in ß-cell function. We aimed to explore the signaling mechanism downstream of FXR to regulate insulin content and underscore its association with Foxa2 and insulin gene (Ins) transcription. All experiments were conducted on FXR transgenic mice, INS-1 823/13 cells, and diabetic Goto-Kakizaki (GK) rats undergoing sham or Roux-en-Y gastric bypass (RYGB) surgery. Islets from FXR knockout mice and INS-1823/13 cells with FXR knockdown exhibited substantially lower insulin levels than that of controls. This was accompanied by decreased Foxa2 expression and Ins transcription. Conversely, FXR overexpression increased insulin content, concomitant with enhanced Foxa2 expression and Ins transcription in INS-1 823/13 cells. Moreover, FXR knockdown reduced FXR recruitment and H3K27 trimethylation in the Foxa2 promoter. Importantly, Foxa2 overexpression abrogated the adverse effects of FXR knockdown on Ins transcription and insulin content in INS-1 823/13 cells. Notably, RYGB surgery led to improved insulin content in diabetic GK rats, which was accompanied by upregulated FXR and Foxa2 expression and Ins transcription. Collectively, these data suggest that Foxa2 serves as the target gene of FXR in ß-cells and mediates FXR-enhanced Ins transcription. Additionally, the upregulated FXR/Foxa2 signaling cascade could contribute to the enhanced insulin content in diabetic GK rats after RYGB.


Asunto(s)
Diabetes Mellitus , Insulina , Ratones , Ratas , Animales , Insulina/metabolismo , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Factor Nuclear 3-beta del Hepatocito/genética , Factor Nuclear 3-beta del Hepatocito/metabolismo
7.
Materials (Basel) ; 16(23)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38068013

RESUMEN

Sodium-potassium (NaK) liquid alloy is a promising candidate for use as an anode material in sodium batteries because of its fluidity, which effectively suppresses the growth of sodium or potassium dendrites. However, the poor wettability of NaK alloy on conventional metal substrates is unfavorable for cell fabrication due to its strong surface tension. In this paper, low-density and low-cost fluorinated aluminum foam is used as a substrate support material for NaK liquid alloy. By combining low-surface-tension NaKC with fluorinated aluminum foam, we obtain a uniformly distributed and structurally stable electrode material. The composite electrode has a cycling stability of more than 3000 h in a symmetrical cell. Furthermore, when coupled with a sulfurized polyacrylonitrile cathode in carbonate electrolyte, it maintains excellent stability even after 800 cycles, with 72% of capacity retention.

8.
Nat Commun ; 14(1): 6995, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37914741

RESUMEN

Quantum storage and distribution of entanglement are the key ingredients for realizing a global quantum internet. Compatible with existing fiber networks, telecom-wavelength entangled photons and corresponding quantum memories are of central interest. Recently, 167Er3+ ions have been identified as a promising candidate for an efficient telecom quantum memory. However, to date, no storage of entangled photons, the crucial step of quantum memory using these promising ions, 167Er3+, has been reported. Here, we demonstrate the storage and retrieval of the entangled state of two telecom photons generated from an integrated photonic chip. Combining the natural narrow linewidth of the entangled photons and long storage time of 167Er3+ ions, we achieve storage time of 1.936 µs, more than 387 times longer than in previous works. Successful storage of entanglement in the crystal is certified using entanglement witness measurements. These results pave the way for realizing quantum networks based on solid-state devices.

9.
Plants (Basel) ; 12(14)2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37514357

RESUMEN

Mesocotyl elongation of rice seedlings is a key trait for deep sowing tolerance and well seedling establishment in dry direct sowing rice (DDSR) production. Subsets of the Rice Diversity Panel 1 (RDP1, 294 accessions) and Hanyou 73 (HY73) recombinant inbred line (RIL) population (312 lines) were screened for mesocotyl length (ML) via dark germination. Six RDP1 accessions (Phudugey, Kasalath, CA902B21, Surjamkuhi, Djimoron, and Goria) had an ML longer than 10 cm, with the other 19 accessions being over 4 cm. A GWAS in RDP1 detected 118 associated SNPs on all 12 chromosomes using a threshold of FDR-adjusted p < 0.05, including 11 SNPs on chromosomes 1, 4, 5, 7, 10, and 12 declared by -log10(P) > 5.868 as the Bonferroni-corrected threshold. Using phenotypic data of three successive trials and a high-density bin map from resequencing genotypic data, four to six QTLs were detected on chromosomes 1, 2, 5, 6, and 10, including three loci repeatedly mapped for ML from two or three replicated trials. Candidate genes were predicted from the chromosomal regions covered by the associated LD blocks and the confidence intervals (CIs) of QTLs and partially validated by the dynamic RNA-seq data in the mesocotyl along different periods of light exposure. Potential strategies of donor parent selection for seedling establishment in DDSR breeding were discussed.

10.
Phys Rev Lett ; 130(22): 223601, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37327414

RESUMEN

Integrated quantum photonics has recently emerged as a powerful platform for generating, manipulating, and detecting entangled photons. Multipartite entangled states lie at the heart of the quantum physics and are the key enabling resources for scalable quantum information processing. Dicke state is an important class of genuinely entangled state, which has been systematically studied in the light-matter interactions, quantum state engineering, and quantum metrology. Here, by using a silicon photonic chip, we report the generation and collectively coherent control of the entire family of four-photon Dicke states, i.e., with arbitrary excitations. We generate four entangled photons from two microresonators and coherently control them in a linear-optic quantum circuit, in which the nonlinear and linear processing are achieved in a chip-scale device. The generated photons are in telecom band, which lays the groundwork for large-scale photonic quantum technologies for multiparty networking and metrology.


Asunto(s)
Cognición , Ojo , Corazón , Fotones , Física
11.
Nat Commun ; 14(1): 1480, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36932077

RESUMEN

The interference of quanta lies at the heart of quantum physics. The multipartite generalization of single-quanta interference creates entanglement, the coherent superposition of states shared by several quanta. Entanglement allows non-local correlations between many quanta and hence is a key resource for quantum information technology. Entanglement is typically considered to be essential for creating non-local quantum interference. Here, we show that this is not the case and demonstrate multiphoton non-local quantum interference that does not require entanglement of any intrinsic properties of the photons. We harness the superposition of the physical origin of a four-photon product state, which leads to constructive and destructive interference with the photons' mere existence. With the intrinsic indistinguishability in the generation process of photons, we realize four-photon frustrated quantum interference. This allows us to observe the following noteworthy difference to quantum entanglement: We control the non-local multipartite quantum interference with a photon that we never detect, which does not require quantum entanglement. These non-local properties pave the way for the studies of foundations of quantum physics and potential applications in quantum technologies.

12.
R Soc Open Sci ; 10(3): 221414, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36998769

RESUMEN

It is 10 years since neural networks made their spectacular comeback. Prompted by this anniversary, we take a holistic perspective on artificial intelligence (AI). Supervised learning for cognitive tasks is effectively solved-provided we have enough high-quality labelled data. However, deep neural network models are not easily interpretable, and thus the debate between blackbox and whitebox modelling has come to the fore. The rise of attention networks, self-supervised learning, generative modelling and graph neural networks has widened the application space of AI. Deep learning has also propelled the return of reinforcement learning as a core building block of autonomous decision-making systems. The possible harms made possible by new AI technologies have raised socio-technical issues such as transparency, fairness and accountability. The dominance of AI by Big Tech who control talent, computing resources, and most importantly, data may lead to an extreme AI divide. Despite the recent dramatic and unexpected success in AI-driven conversational agents, progress in much-heralded flagship projects like self-driving vehicles remains elusive. Care must be taken to moderate the rhetoric surrounding the field and align engineering progress with scientific principles.

13.
Materials (Basel) ; 15(23)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36499836

RESUMEN

Non-autoclaved aerated concrete (NAAC) is a two-phase material with a concrete matrix and air, exhibits good thermal insulation performance and shows good potential in the insulating construction industry. In this study, recycled concrete fine powder was used as an auxiliary cementing material, and the NAAC with different porosity and distribution was fabricated by the non-autoclaved method at different curing temperatures. The effect of porosity on the thermal conductivity and mechanical strength of NAAC is analyzed by experimental tests. A prediction method of thermal conductivity combining pore structure reconstruction and numerical simulation was proposed, which is established by two steps. Firstly, the pore size distributions of NAAC with different porosities were characterized by stereology image analyses. Secondly, the thermal conductivity prediction model based on the pore structure information was established by a COMSOL steady-state heat transfer module. The thermal conductivity results of COMSOL simulations were compared with the experiments and other theoretical models to verify the reliability of the model. The model was used to evaluate the effect of porosity, pore size distribution and the concrete matrix's thermal conductivity on the thermal conductivity of NAAC; these are hard to measure when only using laboratory experiments. The results show that with the increase in curing temperature, the porosity of NAAC increases, and the number and volume proportion of macropores increase. The numerical results suggest that the error between the COMSOL simulations and the experiments was less than 10% under different porosities, which is smaller than other models and has strong reliability. The prediction accuracy of this model increases with the increase in NAAC porosity. The steady thermal conductivity of NAAC is less sensitive to the distribution and dispersion of pore size in a given porosity. With the increase in porosity, the thermal conductivity of NAAC is linearly negatively correlated with that of the concrete matrix, and the correlation is close to 1.

14.
Materials (Basel) ; 15(21)2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36363054

RESUMEN

The shield tunnel is a common solution for natural gas pipelines crossing rivers. Consequently, the development of natural gas tunnel filling materials with excellent performance is crucial to the safe operation and maintenance of pipelines. The foam concrete offers a reasonable solution. Nevertheless, since its inherent compressive strength decreases almost proportionally with the decrease in density, obstacles remain concerning obtaining the high density and relatively low strength required for natural gas tunnel filling. Here, a synergistic optimization strategy was proposed involving the orthogonal test, univariate control, and comprehensive balance method. It involves modifying the type and proportion of cementitious matrix, in particular by incorporating fly ash and PVA fibers in the mix design, and synergetic determining the best mix ratio from the aspects of compressive strength, stability, and dry density. The obtained foam concrete has a compressive strength of 4.29 MPa (FC4) and a dry density of 1060.59 kg/m3 (A11), which meets the requirements of pipeline pressure and pipeline anti-floating. This study is applied to the Yangtze River shield crossing project of the Sino-Russian Eastern Gas Pipeline, and ANSYS was used to simulate the stress and deformation of the foam concrete. This work provides an efficient foam concrete optimization mix scheme, and supports the application of foam concrete in the filling of the long-distance cross-river natural gas tunnels.

15.
Plant J ; 112(5): 1176-1193, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36219491

RESUMEN

The Alfin-like (AL) family is a group of small plant-specific transcriptional factors involved in abiotic stresses in dicotyledon. In an early study, we found an AL gene in rice that was associated with grain yield under drought stress. However, little information is known about the AL family in rice. In this study, AL genes in the rice genome were identified, and the OsAL proteins were found to locate in the nucleus and have no transcriptional self-activation activity. The expression of the OsALs was regulated by different environmental stimulations and plant hormones. Association and domestication analysis revealed that natural variation of most OsALs was significantly associated with yield traits, drought resistance and divergence in grain size in indica and japonica rice varieties. Hap1 of OsAL7.1 and Hap7 of OsAL11 were favorable haplotypes of seed weight and germination under osmotic stress. Furthermore, osal7.1 and osal11 mutants have larger seeds and are more sensitive to abscisic acid and mannitol during germination stage. Overexpressing of OsAL7.1 and OsAL11 in rice weakened the tolerance to drought in the adult stage. Thus, our work provides informative knowledge for exploring and harnessing haplotype diversity of OsALs to improve yield stability under drought stress.


Asunto(s)
Oryza , Oryza/genética , Oryza/metabolismo , Sequías , Semillas/genética , Semillas/metabolismo , Germinación , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética
16.
Front Plant Sci ; 13: 982240, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36082291

RESUMEN

The commercialization of hybrid rice has greatly contributed to the increase in rice yield, with the improvement of its seed production capacity having played an important role. The stigma exsertion rate (SER) is a key factor for improving the outcrossing of the sterile line and the hybrid rice seed production. We used the Zhenshan 97B × IRAT109 recombinant inbred population comprising 163 lines and a natural population of 138 accessions to decipher the genetic foundation of SER over 2 years in three environments. Additionally, we detected eight QTLs for SER on chromosomes 1, 2, and 8 via linkage mapping. We also identified seven and 19 significant associations for SER using genome-wide association study in 2016 and 2017, respectively. Interestingly, we located two lead SNPs (sf0803343504 and sf083344610) on chromosome 8 in the qTSE8 QTL region that were significantly associated with total SER. After transcriptomic analysis, quantitative real-time PCR, and haplotype analysis, we found 13 genes within this reliable region as important candidate genes. Our study results will be beneficial to molecular marker-assisted selection of rice lines with high outcrossing rate, thereby improving the efficiency of hybrid seed production.

18.
Plant Biotechnol J ; 20(9): 1743-1755, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35587579

RESUMEN

Water is crucial for plant growth and survival. The transcellular water movement is facilitated by aquaporins (AQPs) that rapidly and reversibly modify water permeability. The abundance of AQPs is regulated by its synthesis, redistribution and degradation. However, the molecular mechanism of proteasomal degradation of AQPs remains unclear. Here, we demonstrate that a novel E3 ligase, OsRINGzf1, mediated the degradation of AQPs in rice. OsRINGzf1 is the candidate gene from a drought-related quantitative trait locus (QTL) on the long arm of chromosome 4 in rice (Oryza sativa) and encodes a Really Interesting New Gene (RING) zinc finger protein 1. OsRINGzf1 possesses the E3 ligase activity, ubiquitinates and mediates OsPIP2;1 degradation, thus reducing its protein abundance. The content of OsPIP2;1 protein was decreased in OsRINGzf1 overexpression (OE) plants. The degradation of OsPIP2;1 was inhibited by MG132. The OsRINGzf1 OE plants, with higher leaf-related water content (LRWC) and lower leaf water loss rate (LWLR), exhibited enhanced drought resistance, whereas the RNAi and knockout plants of OsRINGzf1 were more sensitive to drought. Together, our data demonstrate that OsRINGzf1 positively regulates drought resistance through promoting the degradation of OsPIP2;1 to enhance water retention capacity in rice.


Asunto(s)
Acuaporinas , Oryza , Acuaporinas/genética , Acuaporinas/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas/genética , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico/genética , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Agua/metabolismo
19.
Clin Med Insights Oncol ; 16: 11795549221075326, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35197718

RESUMEN

INTRODUCTION: Pembrolizumab is widely used in advanced non-small-cell lung cancer (NSCLC) patients with positive programmed death-ligand 1 (PD-L1). However, efficacy evaluation along treatment by serial monitoring of circulating tumor DNA (ctDNA) using next-generation sequencing remained to be well studied. METHODS: Nine PD-L1 positive advanced NSCLC patients were prospectively enrolled and received pembrolizumab monotherapy. Pretreatment tissue and/or plasma samples were collected as baseline reference. Serial plasma samples were collected after 3 and 6 weeks of treatment as well as at disease progression. All samples underwent targeted next-generation sequencing. RESULTS: The median progression-free survival (mPFS) and median overall survival (mOS) were 4.43 and 25.53 months, respectively. In total, 3 patients achieved partial response (PR) or stable disease (SD) for more than 6 months and were thus classified into the durable clinical benefit (DCB) group, whereas the rest 6 were grouped as nondurable benefit (NDB) patients. Molecular profiling of baseline samples revealed that TP53 and APC were the 2 most frequently mutated genes in all patients, whereas POT1 and SETD2 mutations were enriched in DCB and NDB groups, respectively. Higher tumor mutational burden (TMB) was observed in DCB patients than NDB group. During serial ctDNA monitoring, 2 DCB patients showed a dramatic ctDNA reduction while 75% of NDB patients' ctDNA concentration increased at week 6. Several acquired mutations might contribute to the pembrolizumab resistance, including CDKN2A frameshift and MITF nonsense mutations. CONCLUSIONS: Genomic profiling of peripheral blood samples can be applied to dynamically monitor disease progression. The reduction in ctDNA concentration during treatment implied DCBs.

20.
J Cell Mol Med ; 2021 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-33611845

RESUMEN

In this study, we investigated how Roux-en-Y gastric bypass (RYGB) enhances glucagon-like peptide 1 (GLP-1) response in GK rats and explored the potential link between RYGB-stimulated BAs/FXR signalling and GLP-1R-linked signalling in ß-cells, a key pathway that regulates glucose-stimulated insulin secretion (GSIS). Here we show that RYGB restores GLP-1R expression in GK rat islets. This involves increased total BAs as well as chenodeoxycholic acid (CDCA), leading to FXR activation, increasing FXR binding to the promoter of Glp-1r and enhancing occupancy of histone acetyltransferase steroid receptor coactivator-1 (SRC1), thus increasing histone H3 acetylation at the promoter. These coordinated events bring about increased GLP-1R expression, resulting in greater GLP-1 response in ß-cells. Moreover, ablation of FXR suppressed the stimulatory effects of GLP-1. Thus, this study unravels the crucial role of the BAs/FXR/SRC1 axis-controlled GLP-1R expression in ß-cells, which results in enhanced incretin effect and normalized blood glucose of GK rats after RYGB.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA