Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Affect Disord ; 354: 75-81, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38479505

RESUMEN

AIMS AND OBJECTIVES: The purpose of this study was to explore the relationship between the duration of sleep per day and cardiovascular metabolic multimorbidity (CMM) in older adults and to identify how many hours of sleep per day can lead to a lower risk of CMM in older adults. BACKGROUND: CMM are a common syndrome in the older adults. There may be an association between sleep duration and CMM in older adults, with both insomnia and sleep deprivation having an impact on the health of older adults. Therefore, it is important to explore the possibility that older adults who sleep for a few hours per day may have a lower prevalence of CMM. METHODS: The study included 9710 older adults. The sleep duration in this study was assessed by the question "How many hours of sleep do you currently get in a day? ". Older adults were defined as having CMM when they had two or more of the five categories of hypertension, diabetes, heart disease, stroke or cardiovascular disease, dyslipidemia. We used multivariate logistic regression analysis to explore the association among sleep duration and CMM. Restrictive cubic splines were used to examine the shape of the association among sleep duration and the CMM. The STROBE checklist was used for this cross-sectional study. RESULTS: The mean age was 84.78 ± 11.73 years, with 55.5 % being female. Of the total sample, 21.3 % were CMM. When all covariates were adjusted, there was dose-response relationship between sleep duration and CMM. The dose-response relationship between CMM and sleep duration showed that older adults had a lower risk of cardiovascular and metabolic multimorbidity when they slept 9 h and 10 h per day. CONCLUSION: With the increasing population of older adults, the number of older adults suffering from CMM continues to rise, and adequate sleep time can effectively prevent the occurrence of CMM. We should pay attention to the sleep problem of the older adults. RELEVANCE TO CLINICAL PRACTICE: This study provided information for healthcare providers to identify circumstances that increase cardiovascular metabolic multimorbidity and suggest the appropriate sleep duration per day to reduce the risk of disease in older adults. PATIENT OR PUBLIC CONTRIBUTION: Because of the public database data used in this study, all data were collected by survey agency personnel, so this section is not applicable to this study.


Asunto(s)
Multimorbilidad , Duración del Sueño , Humanos , Femenino , Anciano , Anciano de 80 o más Años , Masculino , Estudios Transversales , Sueño/fisiología , Privación de Sueño/complicaciones , China/epidemiología
2.
Int J Chron Obstruct Pulmon Dis ; 15: 1997-2004, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32921997

RESUMEN

Background: Chronic obstructive pulmonary disease (COPD) is a chronic airway inflammatory disease characterized by irreversible airflow obstruction. Pathogenic mechanisms underlying COPD remain largely unknown. Objective: The current study was designed to explore serum concentration of hypoxia-inducible factor 1α (HIF-1α) in stable COPD patients and the potential effect of Lycium barbarum polysaccharides (LBP) on HIF-1α protein expression. Methods: Serum HIF-1α was quantified by ELISA in 102 stable COPD patients before and after 2-week orally taken LBP (100 mL/time, twice daily, 5-15 mg/mL). Correlation of serum LBP and lung function (FEV1%) or blood gas (PO2 and PCO2) was also analyzed. As a control, 105 healthy subjects were also enrolled into this study. Results: Serum concentration of HIF-1α was significantly higher in the stable COPD patients (37.34 ± 7.20 pg/mL) than that in the healthy subjects (29.55 ± 9.66 pg/mL, P<0.001). Oral administration of LBP (5 mg/mL, 100 mL, twice daily for 2 weeks) not only relieved COPD symptoms but also significantly reduced serum HIF-1α concentration (36.94 ± 9.23 vs 30.49 ± 6.42 pg/mL, P<0.05). In addition, level of serum HIF-1α concentration was significantly correlated with PCO2 (r = 0.283, P<0.001), but negatively and significantly correlated with PO2 (r = -0.490, P=0.005) or FEV1%(r = -0.420, P=0.018). Conclusion: These findings suggested that activation of HIF-1 signaling pathway may be involved in the pathophysiology of COPD and that stabilization of serum HIF-1α concentration by LBP might benefit the stable COPD patients.


Asunto(s)
Medicamentos Herbarios Chinos , Enfermedad Pulmonar Obstructiva Crónica , Medicamentos Herbarios Chinos/farmacología , Humanos , Factor 1 Inducible por Hipoxia , Subunidad alfa del Factor 1 Inducible por Hipoxia , Pulmón , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico
3.
Zhonghua Jie He He Hu Xi Za Zhi ; 29(3): 176-80, 2006 Mar.
Artículo en Chino | MEDLINE | ID: mdl-16677481

RESUMEN

OBJECTIVE: To identify the change of the mRNA and protein expression of T-bet and GATA-3 in lung tissues, and to investigate the association between the imbalanced T cell-specific transcription factors T-bet/GATA-3 and the airway inflammation in asthmatic rats. METHODS: Twenty-four male SD rats were randomly divided into a control group and an asthmatic group. Airway responsiveness was measured and the change of airway histology was observed. The concentrations of interleukin-4 (IL-4), IL-5, and interferon-gamma (IFN-gamma) in bronchoalveolar lavage fluid (BALF) were measured by enzyme-linked immunosorbent assay (ELISA). The mRNA and protein expressions of IL-4, IL-5, IFN-gamma, T-bet and GATA-3 in the lungs were detected by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot respectively. RESULTS: The expiration resistance after injection of acetylcholine chloride (20, 40, 80, 160 microg/ml) in the asthmatic group was (6.26 +/- 0.85), (11.55 +/- 3.09), (28.74 +/- 5.94), (3,710.83 +/- 197.49) cm H2O.ml(-1).s(-1) respectively; and that in the control group was (1.51 +/- 0.18), (2.15 +/- 0.36), (6.08 +/- 1.06), (37.17 +/- 6.12) cm H2O.ml(-1).s(-1) respectively; the difference being significant between the two groups (all P < 0.01). In the asthmatic group, the numbers of eosinophils and lymphocytes, the thicknesses of WA/Pi and ASM/Pi were (26.0 +/- 1.6)/mm(2), (45.2 +/- 3.2)/mm(2), 12.0 +/- 1.4, 6.7 +/- 0.6, respectively; and those of the control group were (2.9 +/- 1.2)/mm(2), (8.8 +/- 1.8)/mm(2), 6.4 +/- 0.8, 2.7 +/- 0.5, respectively; all were significantly different between the two groups (all P < 0.01). In the asthmatic group, the concentrations of IL-4, IL-5, and IFN-gamma in BALF were (23.4 +/- 0.7) pg/ml, (24.8 +/- 0.5) pg/ml, (21.7 +/- 1.1) pg/ml, respectively, and those of the control group were (9.3 +/- 0.3) pg/ml, (12.5 +/- 0.3) pg/ml, (65.8 +/- 2.1) pg/ml, respectively; all were significantly different between the two groups (all P < 0.01). In the control group, the mRNA ratio of T-bet to GATA-3 (0.73 +/- 0.32) was significantly increased compared with the asthmatic group (0.06 +/- 0.09, P < 0.01). There was also a significant difference in the ratio of protein expression of T-bet to GATA-3 between the control group (0.75 +/- 0.25) and the asthmatic group (0.09 +/- 0.04, P < 0.01). The ratio of protein expression of T-bet and GATA-3 was correlated negatively with expiration resistance (r = -0.959, -0.919, -0.949, all P < 0.01), the numbers of eosinophils and lymphocytes in lung tissues (r = -0.832, -0.831, all P < 0.01), the thicknesses of WA/Pi and ASM/Pi (r = -0.837, -0.863, all P < 0.01) and the concentrations of IL-4, IL-5 in BALF (r = 0.921, 0.920, all P < 0.01), the mRNA of IL-4, IL-5 in lung tissues (r = -0.964, -0.931, all P < 0.01), but positively with the concentrations of IFN-gamma in BALF and the mRNA of IFN-gamma in lung tissues (r = -0.934, 0.983, all P < 0.01). CONCLUSION: Imbalance of transcription factors T-bet and GATA-3, a reflection of the immune imbalance in asthma, may play a key role in the formation of airway inflammation in the disease.


Asunto(s)
Asma/metabolismo , Factor de Transcripción GATA3/metabolismo , Proteínas de Dominio T Box/metabolismo , Animales , Inflamación , Interferón gamma/metabolismo , Interleucina-4/metabolismo , Interleucina-5/metabolismo , Pulmón/metabolismo , Masculino , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Sistema Respiratorio
4.
Chin Med J (Engl) ; 119(8): 640-8, 2006 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-16635408

RESUMEN

BACKGROUND: Imiquimod is an imidazoquinoline, which class of compounds are known to have antiviral and antitumoural properties. In recent studies, it was shown that imiquimod modulates the T helper cell type Th1/Th2 response by inducing the production of Th1 cytokines like IFN-gamma, and by inhibiting the Th2 cytokines like interleukin (IL)-4. Several investigators have shown that T-bet and GATA-3 are master Th1 and Th2 regulatory transcription factors. This study investigated whether imiquimod treatment inhibited airway inflammation by modulating transcription factors T-bet and GATA-3. METHODS: Thirty-six male SD rats were randomly divided into a control group, an asthmatic group, and an imiquimod group, which was exposed to an aerosol of 0.15% imiquimod. Twenty-four hours after the last ovalbumin (OVA) challenge, airway responsiveness was measured and changes in airway histology were observed. The concentrations of IL-4, IL-5 and IFN-gamma in bronchoalveolar lavage fluid (BALF) and serum were measured by enzyme linked immunosorbent assay (ELISA). The mRNA expressions of IL-4, IL-5, IFN-gamma, T-bet and GATA-3 in lung and in CD4(+) T cells were determined by reverse transcription polymerase chain reaction (RT-PCR). The protein expressions of T-bet and GATA-3 were measured by Western blot. RESULTS: It was demonstrated that imiquimod 1) attenuated OVA induced airway inflammation; 2) diminished the degree of airway hyperresponsiveness (AHR); 3) decreased the Th2 type cytokines and increased Th1 type cytokines mRNA and protein levels; 4) modulated the Th1/Th2 reaction by inhibiting GATA-3 production and increasing T-bet production. CONCLUSION: Imiquimod treatment inhibits OVA induced airway inflammation by modulating key master switches GATA-3 and T-bet that result in committing T helper cells to a Th1 phenotype.


Asunto(s)
Aminoquinolinas/uso terapéutico , Asma/tratamiento farmacológico , Hiperreactividad Bronquial/tratamiento farmacológico , Factor de Transcripción GATA3/genética , Regulación de la Expresión Génica/efectos de los fármacos , Factores de Transcripción/genética , Administración por Inhalación , Aminoquinolinas/administración & dosificación , Animales , Asma/metabolismo , Bronquios/patología , Hiperreactividad Bronquial/metabolismo , Citocinas/biosíntesis , Eosinófilos/fisiología , Imiquimod , Pulmón/patología , Masculino , Ovalbúmina/inmunología , ARN Mensajero/análisis , Ratas , Ratas Sprague-Dawley , Proteínas de Dominio T Box
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA