Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Bull (Beijing) ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38594099

RESUMEN

Magnetic impurities in superconductors are of increasing interest due to emergent Yu-Shiba-Rusinov (YSR) states and Majorana zero modes for fault-tolerant quantum computation. However, a direct relationship between the YSR multiple states and magnetic anisotropy splitting of quantum impurity spins remains poorly characterized. By using scanning tunneling microscopy, we systematically resolve individual transition-metal (Fe, Cr, and Ni) impurities induced YSR multiplets as well as their Zeeman effects in the K3C60 superconductor. The YSR multiplets show identical d orbital-like wave functions that are symmetry-mismatched to the threefold K3C60(1 1 1) host surface, breaking point-group symmetries of the spatial distribution of YSR bound states in real space. Remarkably, we identify an unprecedented fermion-parity-preserving quantum phase transition between ground states with opposite signs of the uniaxial magnetic anisotropy that can be manipulated by an external magnetic field. These findings can be readily understood in terms of anisotropy splitting of quantum impurity spins, and thus elucidate the intricate interplay between the magnetic anisotropy and YSR multiplets.

2.
Nat Commun ; 15(1): 3369, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643171

RESUMEN

One-unit-cell FeSe films on SrTiO3 substrates are of great interest owing to significantly enlarged pairing gaps characterized by two coherence peaks at ±10 meV and ±20 meV. In-situ transport measurement is desired to reveal novel properties. Here, we performed in-situ microscale electrical transport and combined scanning tunneling microscopy measurements on continuous one-unit-cell FeSe films with twin boundaries. We observed two spatially coexisting superconducting phases in domains and on boundaries, characterized by distinct superconducting gaps ( Δ 1 ~15 meV vs. Δ 2 ~10 meV) and pairing temperatures (Tp1~52.0 K vs. Tp2~37.3 K), and correspondingly two-step nonlinear V ~ I α behavior but a concurrent Berezinskii-Kosterlitz-Thouless (BKT)-like transition occurring at T BKT ~28.7 K. Moreover, the onset transition temperature T c onset ~54 K and zero-resistivity temperature T c zero ~31 K are consistent with Tp1 and T BKT , respectively. Our results indicate the broadened superconducting transition in FeSe/SrTiO3 is related to intrinsic electronic inhomogeneity due to distinct two-gap features and phase fluctuations of two-dimensional superconductivity.

3.
Nano Lett ; 23(21): 10081-10088, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37903418

RESUMEN

Nontrivial electronic states are attracting intense attention in low-dimensional physics. Though chirality has been identified in charge states with a scalar order parameter, its intertwining with charge density waves (CDW), film thickness, and the impact on the electronic behaviors remain less well understood. Here, using scanning tunneling microscopy, we report a 2 × 2 chiral CDW as well as a strong suppression of the Te-5p hole-band backscattering in monolayer 1T-TiTe2. These exotic characters vanish in bilayer TiTe2 in a non-CDW state. Theoretical calculations prove that chirality comes from a helical stacking of the triple-q CDW components and, therefore, can persist at the two-dimensional limit. Furthermore, the chirality renders the Te-5p bands with an unconventional orbital texture that prohibits electron backscattering. Our study establishes TiTe2 as a promising playground for manipulating the chiral ground states at the monolayer limit and provides a novel path to engineer electronic properties from an orbital degree.

4.
Natl Sci Rev ; 9(4): nwab225, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35530436

RESUMEN

The microscopic understanding of high-temperature superconductivity in cuprates has been hindered by the apparent complexity of crystal structures in these materials. We used scanning tunneling microscopy and spectroscopy to study the electron-doped copper oxide compound Sr1- x Nd x CuO2, which has only bare cations separating the CuO2 planes and thus the simplest infinite-layer structure of all cuprate superconductors. Tunneling conductance spectra of the major CuO2 planes in the superconducting state revealed direct evidence for a nodeless pairing gap, regardless of variation of its magnitude with the local doping of trivalent neodymium. Furthermore, three distinct bosonic modes are observed as multiple peak-dip-hump features outside the superconducting gaps and their respective energies depend little on the spatially varying gaps. As well as the bosonic modes, with energies identical to those of the external, bending and stretching phonons of copper oxides, our findings reveal the origin of the bosonic modes in lattice vibrations rather than spin excitations.

5.
Phys Rev Lett ; 128(12): 126402, 2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35394299

RESUMEN

Here, we visualize the trapping of topological surface states in the circular n-p junctions on the top surface of the seven-quintuple-layer three dimensional (3D) topological insulator (TI) Sb_{2}Te_{3} epitaxial films. As shown by spatially dependent and field-dependent tunneling spectra, these trapped resonances show field-induced splittings between the degenerate time-reversal-symmetric states at zero magnetic field. These behaviors are attributed unambiguously to Berry-phase switch by comparing the experimental data with both numerical and semiclassical simulations. The successful electrostatic trapping of topological surface states in epitaxial films and the observation of Berry-phase switch provide a rich platform of exploiting new ideas for TI-based quantum devices.

6.
Proc Natl Acad Sci U S A ; 119(8)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35181607

RESUMEN

Interface phonon modes that are generated by several atomic layers at the heterointerface play a major role in the interface thermal conductance for nanoscale high-power devices such as nitride-based high-electron-mobility transistors and light-emitting diodes. Here we measure the local phonon spectra across AlN/Si and AlN/Al interfaces using atomically resolved vibrational electron energy-loss spectroscopy in a scanning transmission electron microscope. At the AlN/Si interface, we observe various interface phonon modes, of which the extended and localized modes act as bridges to connect the bulk AlN modes and bulk Si modes and are expected to boost the phonon transport, thus substantially contributing to interface thermal conductance. In comparison, no such phonon bridge is observed at the AlN/Al interface, for which partially extended modes dominate the interface thermal conductivity. This work provides valuable insights into understanding the interfacial thermal transport in nitride semiconductors and useful guidance for thermal management via interface engineering.

7.
Nano Lett ; 22(1): 476-484, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34978815

RESUMEN

A charge density wave (CDW) is a collective quantum phenomenon in metals and features a wavelike modulation of the conduction electron density. A microscopic understanding and experimental control of this many-body electronic state in atomically thin materials remain hot topics in materials physics. By means of material engineering, we realized a dimensionality and Zr intercalation induced semiconductor-metal phase transition in 1T-ZrX2 (X = Se, Te) ultrathin films, accompanied by a commensurate 2 × 2 CDW order. Furthermore, we observed a CDW energy gap of up to 22 meV around the Fermi level. Fourier-transformed scanning tunneling microscopy and angle-resolved photoemission spectroscopy reveal that 1T-ZrX2 films exhibit the simplest Fermi surface among the known CDW materials in TMDCs, consisting only of a Zr 4d derived elliptical electron conduction band at the corners of the Brillouin zone.

8.
Phys Rev Lett ; 125(7): 077002, 2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32857570

RESUMEN

Identifying the essence of doped Mott insulators is one of the major outstanding problems in condensed matter physics and the key to understanding the high-temperature superconductivity in cuprates. We report real space visualization of Mott insulator-metal transition in Sr_{1-x}La_{x}CuO_{2+y} cuprate films that cover both the electron- and hole-doped regimes. Tunneling conductance measurements directly on the copper-oxide (CuO_{2}) planes reveal a systematic shift in the Fermi level, while the fundamental Mott-Hubbard band structure remains unchanged. This is further demonstrated by exploring the atomic-scale electronic response of CuO_{2} to substitutional dopants and intrinsic defects in a sister compound Sr_{0.92}Nd_{0.08}CuO_{2}. The results may be better explained in the framework of self-modulation doping, similar to that in semiconductor heterostructures, and form a basis for developing any microscopic theories for cuprate superconductivity.

9.
Rev Sci Instrum ; 91(6): 063902, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32611039

RESUMEN

Low-dimensional materials exhibit exotic properties and have attracted widespread attention. However, many low-dimensional materials are highly sensitive to air, making it challenging to investigate their intrinsic properties with ex situ measurements. To overcome such challenges, here, we developed a system combined with sample growth, electrode deposition, and in situ electrical transport measurement under ultra-high vacuum condition. The in situ deposition of electrodes enables desired ohmic electrical contacts between the probes and samples, which allows continuous temperature dependent resistance (R-T) measurements. Combined with a scanning tunneling microscope, surface morphology, electronic structure, and electrical transport properties of the same sample can be systematically investigated. We demonstrate the performance of this in situ electrical transport measurement system with three-unit-cell thick FeSe films grown on Nb-doped SrTiO3(001) substrates, where a low-noise R-T curve with a zero-resistance superconducting transition temperature of ∼30 K is observed.

10.
Phys Rev Lett ; 124(18): 187001, 2020 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-32441977

RESUMEN

Alkali-fulleride superconductors with a maximum critical temperature T_{c}∼40 K exhibit a similar electronic phase diagram to that of unconventional high-T_{c} superconductors. Here we employ cryogenic scanning tunneling microscopy to show that trilayer K_{3}C_{60} displays fully gapped strong coupling s-wave superconductivity, accompanied by a pseudogap above T_{c}∼22 K and within vortices. A precise control of the electronic correlations and potassium doping enables us to reveal that superconductivity occurs near a superconductor-Mott-insulator transition and reaches maximum at half-filling. The s-wave symmetry retains over the entire phase diagram, which, in conjunction with an abrupt decline of the superconductivity below half-filling, indicates that alkali fullerides are predominantly phonon-mediated superconductors, although the electronic correlations also come into play.

11.
Sci Adv ; 5(5): eaaw3988, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31114808

RESUMEN

The surface of a three-dimensional topological insulator (TI) hosts two-dimensional massless Dirac fermions (DFs), the gapless and spin-helical nature of which leads to their high transmission through surface defects or potential barriers. Here, we report the behaviors of topological surface states (TSS) in a triangular quantum corral (TQC) which, unlike a circular corral, is supposed to be totally transparent for DFs. By real-space mapping of the electronic structure of TQCs, both the trapping and detrapping behaviors of the TSS are observed. The selection rules are found to be governed by the geometry and spin texture of the constant energy contour of TSS upon the strong hexagonal warping in Bi2Te3. Our work indicates the extended nature of TSS and elucidates the selection rules of the trapping of TSS in the presence of a complicated surface state structure, giving insights into the effective engineering of DFs in TIs.

12.
Nano Lett ; 18(11): 7176-7180, 2018 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-30350654

RESUMEN

Quantum spin Hall (QSH) effect is an intriguing phenomenon arising from the helical edge states in two-dimensional topological insulators. We use molecular beam epitaxy (MBE) to prepare FeSe films with atomically sharp nematic domain boundaries, where tensile strains, nematicity suppression, and topological band inversion are simultaneously achieved. Using scanning tunneling microscopy (STM), we observe edge states at the Fermi level that spatially distribute as two distinct strips in the vicinity of the domain boundaries. At the end point of the boundaries, a bound state at the Fermi level is further observed. The topological origin of the edge states is supported by density functional theory calculations. Our findings not only demonstrate a candidate for QSH states but also provide a new pathway to realize topological superconductivity in a single-component film.

13.
Nano Lett ; 18(9): 5660-5665, 2018 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-30111116

RESUMEN

We realize superconductor-insulator transitions (SIT) in mechanically exfoliated Bi2Sr2CaCu2O8+δ (BSCCO) flakes and address simultaneously their transport properties as well as the evolution of density of states. Back-gating via the solid ion conductor (SIC) engenders a SIT in BSCCO due to the modulation of carrier density by intercalated lithium ions. Scaling analysis indicates that the SIT follows the theoretical description of a two-dimensional quantum phase transition (2D-QPT). We further carry out tunneling spectroscopy in graphite(G)/BSCCO heterojunctions. We observe V-shaped gaps in the critical regime of the SIT. The density of states in BSCCO gets symmetrically suppressed by further going into the insulating regime. Our technique of combining solid state gating with tunneling spectroscopy can be easily applied to the study of other two-dimensional materials.

14.
Sci Bull (Beijing) ; 63(12): 747-752, 2018 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-36658947

RESUMEN

Interface enhanced superconductivity over 50 K has been discovered in monolayer FeSe films grown on several TiO2-terminated oxide substrates. Whether such phenomenon exists in other oxide substrates remains an extremely interesting topic. Here we report enhanced superconductivity with an onset transition temperature of 18 K in monolayer FeSe on MgO(001) substrate by transport measurement. Scanning transmission electron microscopy investigation on the interface structure indicates that FeSe films grow epitaxially on MgO(001) and that overlayer Fe atoms diffuse into the top two layers of MgO and substitute Mg atoms. Our density functional theory calculations reveal that this substitution promotes the charge transfer from the MgO substrate to the FeSe films, an essential process that also occurs in monolayer FeSe on TiO2-terminated oxides and contributes to the enhanced superconductivity therein. Our finding suggests that superconductivity enhancement in monolayer FeSe films on oxides substrates is rather general as long as charge transfer is allowed at the interface, thus pointing out an explicit direction for searching for new high temperature superconductivity by interface engineering.

15.
Adv Mater ; 30(1)2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29125706

RESUMEN

The quantum anomalous Hall (QAH) effect, which has been realized in magnetic topological insulators (TIs), is the key to applications of dissipationless quantum Hall edge states in electronic devices. However, investigations and utilizations of the QAH effect are limited by the ultralow temperatures needed to reach full quantization-usually below 100 mK in either Cr- or V-doped (Bi,Sb)2 Te3 of the two experimentally confirmed QAH materials. Here it is shown that by codoping Cr and V magnetic elements in (Bi,Sb)2 Te3 TI, the temperature of the QAH effect can be significantly increased such that full quantization is achieved at 300 mK, and zero-field Hall resistance of 0.97 h/e2 is observed at 1.5 K. A systematic transport study of the codoped (Bi,Sb)2 Te3 films with varied Cr/V ratios reveals that magnetic codoping improves the homogeneity of ferromagnetism and modulates the surface band structure. This work demonstrates magnetic codoping to be an effective strategy for achieving high-temperature QAH effect in TIs.

16.
Phys Rev Lett ; 119(17): 176809, 2017 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-29219450

RESUMEN

We report transport studies of Mn-doped Bi_{2}Te_{3} topological insulator (TI) films with an accurately controlled thickness grown by molecular beam epitaxy. We find that films thicker than five quintuple layers (QLs) exhibit the usual anomalous Hall effect for magnetic TIs. When the thickness is reduced to four QLs, however, characteristic features associated with the topological Hall effect (THE) emerge. More surprisingly, the THE vanishes again when the film thickness is further reduced to three QLs. Theoretical calculations demonstrate that the coupling between the top and bottom surface states at the dimensional crossover regime stabilizes the magnetic Skyrmion structure that is responsible for the THE.

17.
Nat Nanotechnol ; 12(10): 953-957, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28785093

RESUMEN

The recent experimental observation of the quantum anomalous Hall effect has cast significant attention on magnetic topological insulators. In these magnetic counterparts of conventional topological insulators such as Bi2Te3, a long-range ferromagnetic state can be established by chemical doping with transition-metal elements. However, a much richer electronic phase diagram can emerge and, in the specific case of Cr-doped Bi2(SexTe1-x)3, a magnetic quantum phase transition tuned by the actual chemical composition has been reported. From an application-oriented perspective, the relevance of these results hinges on the possibility to manipulate magnetism and electronic band topology by external perturbations such as an electric field generated by gate electrodes-similar to what has been achieved in conventional diluted magnetic semiconductors. Here, we investigate the magneto-transport properties of Cr-doped Bi2(SexTe1-x)3 with different compositions under the effect of a gate voltage. The electric field has a negligible effect on magnetic order for all investigated compositions, with the remarkable exception of the sample close to the topological quantum critical point, where the gate voltage reversibly drives a ferromagnetic-to-paramagnetic phase transition. Theoretical calculations show that a perpendicular electric field causes a shift in the electronic energy levels due to the Stark effect, which induces a topological quantum phase transition and, in turn, a magnetic phase transition.

18.
Nat Commun ; 8(1): 214, 2017 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-28790304

RESUMEN

Interface charge transfer and electron-phonon coupling have been suggested to play a crucial role in the recently discovered high-temperature superconductivity of single unit-cell FeSe films on SrTiO3. However, their origin remains elusive. Here, using ultraviolet photoemission spectroscopy and element-sensitive X-ray photoemission spectroscopy, we identify the strengthened Ti-O bond that contributes to the interface enhanced electron-phonon coupling and unveil the band bending at the FeSe/SrTiO3 interface that leads to the charge transfer from SrTiO3 to FeSe films. We also observe band renormalization that accompanies the onset of superconductivity. Our results not only provide valuable insights into the mechanism of the interface-enhanced superconductivity, but also point out a promising route toward designing novel superconductors in heterostructures with band bending-induced charge transfer and interfacial enhanced electron-phonon coupling.The origin of interface charge transfer and electron-phonon coupling in single unit-cell FeSe on SrTiO3 remains elusive. Here, Zhang et al. report strengthened Ti-O bond and band bending at the FeSe/SrTiO3 interface, which leads to several important processes.

19.
Nat Commun ; 8: 16071, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28695894

RESUMEN

Study of the dephasing in electronic systems is not only important for probing the nature of their ground states, but also crucial to harnessing the quantum coherence for information processing. In contrast to well-studied conventional metals and semiconductors, it remains unclear which mechanism is mainly responsible for electron dephasing in three-dimensional topological insulators (TIs). Here, we report on using weak antilocalization effect to measure the dephasing rates in highly tunable (Bi,Sb)2Te3 thin films. As the transport is varied from a bulk-conducting regime to surface-dominant transport, the dephasing rate is observed to evolve from a linear temperature dependence to a sublinear power-law dependence. Although the former is consistent with the Nyquist electron-electron interactions commonly seen in ordinary 2D systems, the latter leads to enhanced electron dephasing at low temperatures and is attributed to the coupling between the surface states and the localized charge puddles in the bulk of 3D TIs.

20.
Sci Bull (Beijing) ; 62(12): 852-856, 2017 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-36659319

RESUMEN

The search for Majorana fermions in topological superconductors is one of paramount research targets in physics today. Using a cryogenic scanning tunneling microscopy, we here report the signature of topologically nontrivial superconductivity on a single material of ß-Bi2Pd films grown by molecular beam epitaxy. The superconducting gap associated with spinless odd-parity pairing opens on the surface and appears much larger than the bulk one due to the Dirac-fermion enhanced parity mixing of surface pair potential. Zero bias conductance peaks, probably from Majorana zero modes supported by such superconducting states, are identified at magnetic vortices. The superconductivity exhibits resistance to nonmagnetic defects, characteristic of time-reversal-invariant topological superconductors. Our study reveals ß-Bi2Pd as a prime platform to generate, manipulate and braid Majorana zero modes for quantum computation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...