Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Genet ; 15: 1375148, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38586586

RESUMEN

Introduction: MicroRNAs (miRNAs) are a class of non-coding RNA molecules that play a crucial role in the regulation of diverse biological processes across various organisms. Despite not encoding proteins, miRNAs have been found to have significant implications in the onset and progression of complex human diseases. Methods: Conventional methods for miRNA functional enrichment analysis have certain limitations, and we proposed a novel method called MiRNA Set Enrichment Analysis based on Multi-source Heterogeneous Information Fusion (MHIF-MSEA). Three miRNA similarity networks (miRSN-DA, miRSN-GOA, and miRSN-PPI) were constructed in MHIF-MSEA. These networks were built based on miRNA-disease association, gene ontology (GO) annotation of target genes, and protein-protein interaction of target genes, respectively. These miRNA similarity networks were fused into a single similarity network with the averaging method. This fused network served as the input for the random walk with restart algorithm, which expanded the original miRNA list. Finally, MHIF-MSEA performed enrichment analysis on the expanded list. Results and Discussion: To determine the optimal network fusion approach, three case studies were introduced: colon cancer, breast cancer, and hepatocellular carcinoma. The experimental results revealed that the miRNA-miRNA association network constructed using miRSN-DA and miRSN-GOA exhibited superior performance as the input network. Furthermore, the MHIF-MSEA model performed enrichment analysis on differentially expressed miRNAs in breast cancer and hepatocellular carcinoma. The achieved p-values were 2.17e(-75) and 1.50e(-77), and the hit rates improved by 39.01% and 44.68% compared to traditional enrichment analysis methods, respectively. These results confirm that the MHIF-MSEA method enhances the identification of enriched miRNA sets by leveraging multiple sources of heterogeneous information, leading to improved insights into the functional implications of miRNAs in complex diseases.

2.
Plant Physiol ; 193(4): 2622-2639, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37587696

RESUMEN

Common purslane (Portulaca oleracea) integrates both C4 and crassulacean acid metabolism (CAM) photosynthesis pathways and is a promising model plant to explore C4-CAM plasticity. Here, we report a high-quality chromosome-level genome of nicotinamide adenine dinucleotide (NAD)-malic enzyme (ME) subtype common purslane that provides evidence for 2 rounds of whole-genome duplication (WGD) with an ancient WGD (P-ß) in the common ancestor to Portulacaceae and Cactaceae around 66.30 million years ago (Mya) and another (Po-α) specific to common purslane lineage around 7.74 Mya. A larger number of gene copies encoding key enzymes/transporters involved in C4 and CAM pathways were detected in common purslane than in related species. Phylogeny, conserved functional site, and collinearity analyses revealed that the Po-α WGD produced the phosphoenolpyruvate carboxylase-encoded gene copies used for photosynthesis in common purslane, while the P-ß WGD event produced 2 ancestral genes of functionally differentiated (C4- and CAM-specific) beta carbonic anhydrases involved in the C4 + CAM pathways. Additionally, cis-element enrichment analysis in the promoters showed that CAM-specific genes have recruited both evening and midnight circadian elements as well as the Abscisic acid (ABA)-independent regulatory module mediated by ethylene-response factor cis-elements. Overall, this study provides insights into the origin and evolutionary process of C4 and CAM pathways in common purslane, as well as potential targets for engineering crops by integrating C4 or CAM metabolism.


Asunto(s)
Portulaca , Portulaca/genética , Portulaca/metabolismo , Duplicación de Gen , Metabolismo Ácido de las Crasuláceas , Evolución Biológica , Filogenia , Fotosíntesis/genética
3.
J Integr Plant Biol ; 64(7): 1394-1410, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35607822

RESUMEN

Anther development from stamen primordium to pollen dispersal is complex and essential to sexual reproduction. How this highly dynamic and complex developmental process is controlled genetically is not well understood, especially for genes involved in specific key developmental phases. Here we generated RNA sequencing libraries spanning 10 key stages across the entirety of anther development in maize (Zea mays). Global transcriptome analyses revealed distinct phases of cell division and expansion, meiosis, pollen maturation, and mature pollen, for which we detected 50, 245, 42, and 414 phase-specific marker genes, respectively. Phase-specific transcription factor genes were significantly enriched in the phase of meiosis. The phase-specific expression of these marker genes was highly conserved among the maize lines Chang7-2 and W23, indicating they might have important roles in anther development. We explored a desiccation-related protein gene, ZmDRP1, which was exclusively expressed in the tapetum from the tetrad to the uninucleate microspore stage, by generating knockout mutants. Notably, mutants in ZmDRP1 were completely male-sterile, with abnormal Ubisch bodies and defective pollen exine. Our work provides a glimpse into the gene expression dynamics and a valuable resource for exploring the roles of key phase-specific genes that regulate anther development.


Asunto(s)
Flores , Zea mays , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Meiosis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reproducción , Zea mays/metabolismo
4.
New Phytol ; 229(5): 2984-2997, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33135165

RESUMEN

Plant phased small interfering RNAs (phasiRNAs) contribute to robust male fertility; however, specific functions remain undefined. In maize (Zea mays), male sterile23 (ms23), necessary for both 24-nt phasiRNA precursor (24-PHAS) loci and Dicer-like5 (Dcl5) expression, and dcl5-1 mutants unable to slice PHAS transcripts lack nearly all 24-nt phasiRNAs. Based on sequence capture bisulfite-sequencing, we find that CHH DNA methylation of most 24-PHAS loci is increased in meiotic anthers of control plants but not in the ms23 and dcl5 mutants. Because dcl5-1 anthers express PHAS precursors, we conclude that the 24-nt phasiRNAs, rather than just activation of PHAS transcription, are required for targeting increased CHH methylation at these loci. Although PHAS precursors are processed into multiple 24-nt phasiRNA products, there is substantial differential product accumulation. Abundant 24-nt phasiRNA positions corresponded to high CHH methylation within individual loci, reinforcing the conclusion that 24-nt phasiRNAs contribute to increased CHH methylation in cis.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Zea mays , Metilación de ADN/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN de Planta , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Zea mays/genética , Zea mays/metabolismo
5.
Plant Cell ; 31(5): 974-992, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30914497

RESUMEN

The early maize (Zea mays) seed undergoes several developmental stages after double fertilization to become fully differentiated within a short period of time, but the genetic control of this highly dynamic and complex developmental process remains largely unknown. Here, we report a high temporal-resolution investigation of transcriptomes using 31 samples collected at an interval of 4 or 6 h within the first six days of seed development. These time-course transcriptomes were clearly separated into four distinct groups corresponding to the stages of double fertilization, coenocyte formation, cellularization, and differentiation. A total of 22,790 expressed genes including 1415 transcription factors (TFs) were detected in early stages of maize seed development. In particular, 1093 genes including 110 TFs were specifically expressed in the seed and displayed high temporal specificity by expressing only in particular period of early seed development. There were 160, 22, 112, and 569 seed-specific genes predominantly expressed in the first 16 h after pollination, coenocyte formation, cellularization, and differentiation stage, respectively. In addition, network analysis predicted 31,256 interactions among 1317 TFs and 14,540 genes. The high temporal-resolution transcriptome atlas reported here provides an important resource for future functional study to unravel the genetic control of seed development.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/genética , Semillas/genética , Transcriptoma , Zea mays/genética , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Especificidad de Órganos , Polinización , Semillas/crecimiento & desarrollo , Factores de Tiempo , Factores de Transcripción/genética , Zea mays/crecimiento & desarrollo
6.
Nat Commun ; 10(1): 464, 2019 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-30683940

RESUMEN

Broomcorn millet (Panicum miliaceum L.) has strong tolerance to abiotic stresses, and is probably one of the oldest crops, with its earliest cultivation that dated back to ca. ~10,000 years. We report here its genome assembly through a combination of PacBio sequencing, BioNano, and Hi-C (in vivo) mapping. The 18 super scaffolds cover ~95.6% of the estimated genome (~887.8 Mb). There are 63,671 protein-coding genes annotated in this tetraploid genome. About ~86.2% of the syntenic genes in foxtail millet have two homologous copies in broomcorn millet, indicating rare gene loss after tetraploidization in broomcorn millet. Phylogenetic analysis reveals that broomcorn millet and foxtail millet diverged around ~13.1 Million years ago (Mya), while the lineage specific tetraploidization of broomcorn millet may be happened within ~5.91 million years. The genome is not only beneficial for the genome assisted breeding of broomcorn millet, but also an important resource for other Panicum species.


Asunto(s)
Cromosomas de las Plantas/química , Genoma de Planta , Panicum/genética , Filogenia , Proteínas de Plantas/genética , Adaptación Fisiológica/genética , Evolución Biológica , Mapeo Cromosómico , Ontología de Genes , Tamaño del Genoma , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , Panicum/clasificación , Fitomejoramiento , Estrés Fisiológico , Sintenía , Tetraploidía
7.
Nat Genet ; 50(9): 1289-1295, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30061735

RESUMEN

Maize is an important crop with a high level of genome diversity and heterosis. The genome sequence of a typical female line, B73, was previously released. Here, we report a de novo genome assembly of a corresponding male representative line, Mo17. More than 96.4% of the 2,183 Mb assembled genome can be accounted for by 362 scaffolds in ten pseudochromosomes with 38,620 annotated protein-coding genes. Comparative analysis revealed large gene-order and gene structural variations: approximately 10% of the annotated genes were mutually nonsyntenic, and more than 20% of the predicted genes had either large-effect mutations or large structural variations, which might cause considerable protein divergence between the two inbred lines. Our study provides a high-quality reference-genome sequence of an important maize germplasm, and the intraspecific gene order and gene structural variations identified should have implications for heterosis and genome evolution.


Asunto(s)
Orden Génico/genética , Variación Genética/genética , Genoma de Planta/genética , Zea mays/genética , Cromosomas de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/genética , Vigor Híbrido/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...