Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Viruses ; 15(6)2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-37376572

RESUMEN

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) disrupts the blood-testis barrier (BTB), resulting in alterations in spermatogenesis. However, whether BTB-related proteins (such as ZO-1, claudin11, N-cadherin, and CX43) are targeted by SARS-CoV-2 remains to be clarified. BTB is a physical barrier between the blood vessels and the seminiferous tubules of the animal testis, and it is one of the tightest blood-tissue barriers in the mammalian body. In this study, we investigated the effects of viral proteins, via ectopic expression of individual viral proteins, on BTB-related proteins, the secretion of immune factors, and the formation and degradation of autophagosomes in human primary Sertoli cells. Our study demonstrated that ectopic expression of viral E (envelope protein) and M (membrane protein) induced the expressions of ZO-1 and claudin11, promoted the formation of autophagosomes, and inhibited autophagy flux. S (spike protein) reduced the expression of ZO-1, N-cadherin, and CX43, induced the expression of claudin11, and inhibited the formation and degradation of autophagosomes. N (nucleocapsid protein) reduced the expression of ZO-1, claudin11, and N-cadherin. All the structural proteins (SPs) E, M, N, and S increased the expression of the FasL gene, and the E protein promoted the expression and secretion of FasL and TGF-ß proteins and the expression of IL-1. Blockage of autophagy by specific inhibitors resulted in the suppression of BTB-related proteins by the SPs. Our results indicated that SARS-CoV-2 SPs (E, M, and S) regulate BTB-related proteins through autophagy.


Asunto(s)
COVID-19 , Células de Sertoli , Ratas , Masculino , Animales , Humanos , SARS-CoV-2/metabolismo , Barrera Hematotesticular , Conexina 43/genética , Conexina 43/metabolismo , Ratas Sprague-Dawley , COVID-19/metabolismo , Cadherinas , Autofagia , Proteínas Virales/metabolismo , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...