Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 14(11)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36432651

RESUMEN

MLN4924 is a selective neddylation inhibitor that has shown great potential in treating several cancer and metabolic diseases, including obesity. However, it remains largely unknown whether MLN4924 has similar effect on non-alcoholic liver disease (NAFLD), which is closely associated with metabolic disorders. Here, we investigated the role of MLN4924 in NAFLD treatment and the underlying mechanism of the action using primary hepatocytes stimulated with free fatty acid, as well as high-fat diet (HFD)-induced NAFLD mouse models. We found that MLN4924 can inhibit the accumulation of lipid and reduce the expression of peroxisome proliferator-activated receptor γ (PPARγ), a key player in adipocyte differentiation and function in both in vivo and in vitro models. Moreover, we verified its important role in decreasing the synthesis and accumulation of fat in the liver, thus mitigating the development of NAFLD in the mouse model. The body weight and fat mass in MLN4924-treated animals were significantly reduced compared to the control group, while the metabolic activity, including O2 consumption, CO2 and heat production, also increased in these animals. Importantly, we demonstrated for the first time that MLN4924 can markedly boost mitochondrial fat acid oxidation (FAO) to alter liver lipid metabolism. Finally, we compared the metabolites between MLN4924-treated and untreated Huh7 cells after fatty acid induction using lipidomics methods and techniques. We found induction of several metabolites in the treated cells, including Beta-guanidinopropionic acid (b-GPA) and Fluphenazine, which was in accordance with the increase of FAO and metabolism. Together, our study provided a link between neddylation modification and energy metabolism, as well as evidence for targeting neddylation as an emerging therapeutic approach to tackle NAFLD.

2.
Diabetes ; 71(9): 1862-1879, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35709007

RESUMEN

Brown and beige adipocytes dissipate energy in a nonshivering thermogenesis manner, exerting beneficial effects on metabolic homeostasis. CHCHD10 is a nuclear-encoded mitochondrial protein involved in cristae organization; however, its role in thermogenic adipocytes remains unknown. We identify CHCHD10 as a novel regulator for adipocyte thermogenesis. CHCHD10 is dramatically upregulated during thermogenic adipocyte activation by PPARγ-PGC1α and positively correlated with UCP1 expression in adipose tissues from humans and mice. We generated adipocyte-specific Chchd10 knockout mice (Chchd10-AKO) and found that depleting CHCHD10 leads to impaired UCP1-dependent thermogenesis and energy expenditure in the fasting state, with no effect in the fed state. Lipolysis in adipocytes is disrupted by CHCHD10 deficiency, while augmented lipolysis through ATGL overexpression recovers adipocyte thermogenesis in Chchd10-AKO mice. Consistently, overexpression of Chchd10 activates thermogenic adipocytes. Mechanistically, CHCHD10 deficiency results in the disorganization of mitochondrial cristae, leading to impairment of oxidative phosphorylation complex assembly in mitochondria, which in turn inhibits ATP generation. Decreased ATP results in downregulation of lipolysis by reducing nascent protein synthesis of ATGL, thereby suppressing adipocyte thermogenesis. As a result, Chchd10-AKO mice are prone to develop high-fat diet-induced metabolic disorders. Together, our findings reveal an essential role of CHCHD10 in regulating lipolysis and the thermogenic program in adipocytes.


Asunto(s)
Adipocitos Beige , Adipocitos Marrones , Lipólisis , Proteínas Mitocondriales , Termogénesis , Adenosina Trifosfato/metabolismo , Adipocitos Beige/metabolismo , Adipocitos Marrones/metabolismo , Animales , Humanos , Lipólisis/genética , Ratones , Ratones Noqueados , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
3.
J Biol Chem ; 298(2): 101544, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34971706

RESUMEN

Uncontrolled gluconeogenesis results in elevated hepatic glucose production in type 2 diabetes (T2D). The small ubiquitin-related modifier (SUMO)-specific protease 2 (SENP2) is known to catalyze deSUMOylation of target proteins, with broad effects on cell growth, signal transduction, and developmental processes. However, the role of SENP2 in hepatic gluconeogenesis and the occurrence of T2D remain unknown. Herein, we established SENP2 hepatic knockout mice and found that SENP2 deficiency could protect against high-fat diet-induced hyperglycemia. Pyruvate- or glucagon-induced elevation in blood glucose was attenuated by disruption of SENP2 expression, whereas overexpression of SENP2 in the liver facilitated high-fat diet-induced hyperglycemia. Using an in vitro assay, we showed that SENP2 regulated hepatic glucose production. Mechanistically, the effects of SENP2 on gluconeogenesis were found to be mediated by the cellular fuel sensor kinase, 5'-AMP-activated protein kinase alpha (AMPKα), which is a negative regulator of gluconeogenesis. SENP2 interacted with and deSUMOylated AMPKα, thereby promoting its ubiquitination and reducing its protein stability. Inhibition of AMPKα kinase activity dramatically reversed impaired hepatic gluconeogenesis and reduced blood glucose levels in SENP2-deficient mice. Our study highlights the novel role of hepatic SENP2 in regulating gluconeogenesis and furthers our understanding of the pathogenesis of T2D.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Cisteína Endopeptidasas , Diabetes Mellitus Tipo 2 , Hiperglucemia , Sumoilación , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Glucemia/metabolismo , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Gluconeogénesis , Glucosa/metabolismo , Hiperglucemia/metabolismo , Hígado/metabolismo , Ratones , Péptido Hidrolasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA