Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; 19(44): e2303251, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37376823

RESUMEN

In this paper, strong hydrophilic poly(ionic liquid)s (PILs) are selectively grafted on different positions (mesoporous channels and outer surface) of mesoporous silica via thiol-ene click chemical reaction. The purposes of selective grafting are on the one hand, to explore the differences of adsorption and transportation of water molecules in mesoporous channels and on the outer surface, and on the other hand, to combine the two approaches (intra-pore grafting and external surface grafting) to reasonably design SiO2 @PILs low humidity sensing film with synergetic function to achieve high sensitivity. The results of low relativehumidity (RH) sensing test show that the sensing performance of humidity sensor based on mesoporous silica grafted with PILs in the channels is better than that of humidity sensor based on mesoporous silica grafted with PILs on the outer surface. Compared with water molecules transport single channel, the construction of dual-channel water transport significantly improves the sensitivity of the low humidity sensor, and the response of the sensor is up to 4112% in the range of 7-33% RH. Moreover, the existence of micropores and the formation of dual-channel water transport affect the adsorption/desorption behaviors of the sensor under different humidity ranges, especially below 11% RH.

2.
Front Cardiovasc Med ; 10: 1083547, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37077735

RESUMEN

Atherosclerosis (AS) is the major form of cardiovascular disease and the leading cause of morbidity and mortality in countries around the world. Atherosclerosis combines the interactions of systemic risk factors, haemodynamic factors, and biological factors, in which biomechanical and biochemical cues strongly regulate the process of atherosclerosis. The development of atherosclerosis is directly related to hemodynamic disorders and is the most important parameter in the biomechanics of atherosclerosis. The complex blood flow in arteries forms rich WSS vectorial features, including the newly proposed WSS topological skeleton to identify and classify the WSS fixed points and manifolds in complex vascular geometries. The onset of plaque usually occurs in the low WSS area, and the plaque development alters the local WSS topography. low WSS promotes atherosclerosis, while high WSS prevents atherosclerosis. Upon further progression of plaques, high WSS is associated with the formation of vulnerable plaque phenotype. Different types of shear stress can lead to focal differences in plaque composition and to spatial variations in the susceptibility to plaque rupture, atherosclerosis progression and thrombus formation. WSS can potentially gain insight into the initial lesions of AS and the vulnerable phenotype that gradually develops over time. The characteristics of WSS are studied through computational fluid dynamics (CFD) modeling. With the continuous improvement of computer performance-cost ratio, WSS as one of the effective parameters for early diagnosis of atherosclerosis has become a reality and will be worth actively promoting in clinical practice. The research on the pathogenesis of atherosclerosis based on WSS is gradually an academic consensus. This article will comprehensively review the systemic risk factors, hemodynamics and biological factors involved in the formation of atherosclerosis, and combine the application of CFD in hemodynamics, focusing on the mechanism of WSS and the complex interactions between WSS and plaque biological factors. It is expected to lay a foundation for revealing the pathophysiological mechanisms related to abnormal WSS in the progression and transformation of human atherosclerotic plaques.

3.
Physiol Plant ; 174(6): e13818, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36345780

RESUMEN

Heterosis, known as one of the most successful strategies for increasing grain yield and abiotic/biotic stress tolerance, has been widely exploited in maize breeding. However, the underlying molecular processes are still to be elucidated. The maize hybrid "Zhengdan538" shows high tolerance to drought stress. The transcriptomes of the seedling leaves of its parents, "ZhengA88" and "ZhengT22" and their reciprocal F1 hybrid under well-watered and water deficit conditions, were analyzed by RNA sequencing (RNA-Seq). Transcriptome profiling of the reciprocal hybrid revealed 2994-4692 differentially expressed genes (DEGs) under well-watered and water-deficit conditions, which were identified by comparing with their parents. The reciprocal hybrid was more closely related to the parental line "ZhengT22" than to the parental line "ZhengA88" in terms of gene expression patterns under water-deficit condition. Furthermore, genes showed expression level dominance (ELD), especially the high-parental ELD (Class 3 and 5), accounted for the largest proportion of DEGs between the reciprocal F1 hybrid and their parental lines under water deficit. These ELD genes mainly participated in photosynthesis, energy biosynthesis, and metabolism processes. The results indicated that ELD genes played important roles in hybrid tolerance to water deficit. Moreover, a set of important drought-responsive transcription factors were found to be encoded by the identified ELD genes and are thought to function in improving drought tolerance in maize hybrid plants. Our results provide a better understanding of the molecular mechanism of drought tolerance in hybrid maize.


Asunto(s)
Transcriptoma , Zea mays , Transcriptoma/genética , Zea mays/metabolismo , Agua/metabolismo , Perfilación de la Expresión Génica/métodos , Vigor Híbrido , Sequías , Regulación de la Expresión Génica de las Plantas/genética
4.
G3 (Bethesda) ; 12(10)2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-35944205

RESUMEN

The maize (Zea mays L.) husk consists of multiple leaf layers and plays an important role in grain growth and development. Despite significant achievements in physiological and morphological research, few studies have focused on the detection of genetic loci underlying husk-related traits due to the lack of efficient tools. In this study, we constructed an ultra-high-density linkage map using genotyping by sequencing based on a recombinant inbred line population to estimate the genetic variance and heritability of 3 husk traits, i.e. husk length, husk width, and husk layer number in 3 field environments and the combined environment. The 3 husk traits showed broad phenotypic variation and high heritability; the broad-sense heritability (H2) was 0.92, 0.84, and 0.86. Twenty quantitative trait loci were consistently detected more than 1 environment, including 9 for husk length, 6 for husk width, and 5 for husk layer number. These loci were considered as stable quantitative trait loci. Based on the quantitative trait loci mapping in the recombinant inbred line population, qHL6 and qHN4 were detected across all environments and inferred to be reliable and major-effect quantitative trait loci for husk length and husk layer number, respectively. In addition, several predicted candidate genes were identified in the region of qHL6 and qHN4, of which 17 candidate genes potentially play a role in biological processes related to development process and energy metabolism. These results will be as a useful resource for performing functional studies aimed at understanding the molecular pathways involved in husk growth and development.


Asunto(s)
Sitios de Carácter Cuantitativo , Zea mays , Mapeo Cromosómico/métodos , Ligamiento Genético , Genotipo , Fenotipo , Polimorfismo de Nucleótido Simple , Zea mays/genética
5.
Technol Cancer Res Treat ; 20: 15330338211064438, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34939866

RESUMEN

Background: Recently, accumulating evidence confirmed that up-frameshift protein 1 (UPF1) was aberrantly expressed in various cancers. However, the molecular mechanism mediated by UPF1 underlying colorectal carcinogenesis remains unclear. Method: Immunohistochemistry (IHC) and quantitative real-time polymerase chain reaction analysis were used to determine the expression level of UPF1 in colorectal cancer (CRC) tissues. CCK-8, EdU, transwell assay, and flow cytometry were performed to investigate the biological significance of UPF1. Epithelial-mesenchymal transition (EMT) and apoptosis associated markers were detected by western blotting. Results: We found that UPF1 expression was upregulated in CRC tissues and cell lines. Clinical analysis revealed that high UPF1 expression was positively correlated with advanced stage, lymph node metastasis and shorter survival. Knockdown of UPF1 suppressed cell proliferation and cell cycle progression. Functionally, UPF1 promotes tumor metastasis by inducing epithelial to mesenchymal transition. Further investigations revealed that knockdown of UPF1 promoted apoptosis through triggering DNA damage. Conclusions: Taken together, this research revealed that UPF1 plays an oncogenic role in CRC via regulating EMT and apoptosis and may be a potential therapeutic target for CRC.


Asunto(s)
Apoptosis/genética , Biomarcadores de Tumor , Neoplasias Colorrectales/genética , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , ARN Helicasas/genética , Transactivadores/genética , Adulto , Anciano , Línea Celular Tumoral , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/mortalidad , Daño del ADN , Progresión de la Enfermedad , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Metástasis de la Neoplasia , Estadificación de Neoplasias , Pronóstico , ARN Helicasas/metabolismo , Transactivadores/metabolismo
6.
Front Genet ; 12: 723802, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34659346

RESUMEN

Background: This study aimed to explore the biological functions and prognostic role of Epithelial-mesenchymal transition (Epithelial-mesenchymal transition)-related lncRNAs in colorectal cancer (CRC). Methods: The Cancer Genome Atlas database was applied to retrieve gene expression data and clinical information. An EMT-related lncRNA risk signature was constructed relying on univariate Cox regression, Least Absolute Shrinkage and Selector Operation (LASSO) and multivariate Cox regression analysis of the EMT-related lncRNA expression data and clinical information. Then, an individualized prognostic prediction model based on the nomogram was developed and the predictive accuracy and discriminative ability of the nomogram were determined by the receiver operating characteristic curve and calibration curve. Finally, a series of analyses, such as functional analysis and unsupervised cluster analysis, were conducted to explore the influence of independent lncRNAs on CRC. Results: A total of 581 patients were enrolled and an eleven-EMT-related lncRNA risk signature was identified relying on the comprehensive analysis of the EMT-related lncRNA expression data and clinical information in the training cohort. Then, risk scores were calculated to divide patients into high and low-risk groups, and the Kaplan-Meier curve analysis showed that low-risk patients tended to have better overall survival (OS). Multivariate Cox regression analysis indicated that the EMT-related lncRNA signature was significantly associated with prognosis. The results were subsequently confirmed in the validation dataset. Then, we constructed and validated a predictive nomogram for overall survival based on the clinical factors and risk signature. Functional characterization confirmed this signature could predict immune-related phenotype and was associated with immune cell infiltration (i.e., macrophages M0, M1, Tregs, CD4 memory resting cells, and neutrophils), tumor mutation burden (TMB). Conclusions: Our study highlighted the value of the 11-EMT-lncRNA signature as a predictor of prognosis and immunotherapeutic response in CRC.

7.
Physiol Plant ; 173(4): 1935-1945, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34494286

RESUMEN

Drought is one of the main abiotic stresses adversely affecting maize growth and grain yield. Identifying drought tolerance-related genes and breeding varieties with enhanced tolerance are effective strategies for minimizing the effects of drought stress. In this study, the leaf relative water content (LRWC) was used for evaluating drought tolerance. QTL-seq analysis of 419 F2 individuals from a cross between ZhengT22 (the drought-tolerant line with high LRWC) and ZhengA88 (the drought-sensitive line with low LRWC) revealed four LRWC-related QTLs (qLRWC2, qLRWC10a, qLRWC10b, and qLRWC10c) in maize seedlings under water deficit. Of these QTLs, qLRWC2 was located in a 2.03-Mb interval on chromosome 2, whereas qLRWC10a, qLRWC10b, and qLRWC10c were located in 2.85-, 3.99-, and 2.05-Mb intervals, respectively, on chromosome 10, and the 93 genes contained the variation loci locating in the four QTLs regions. To identify the candidate genes within the QTLs, an RNA-seq analysis was performed for the parents exposed to water deficit. Seven genes with effective variation loci showed significant difference in expression either in ZhengA88 or ZhengT22 in response to water deficit. Moreover, among the genes, ZmPrx64, ZmCIPK, HSP90, and ABCG34 have all been shown to be related to water stress in the previous studies. Thus, they are primary considered as the potential candidate genes controlling LRWC under water deficit at the seeding stage of maize in this study. These findings will help clarify the molecular basis of drought tolerance in maize seedlings and may be relevant for future functional analysis and for breeding drought-tolerant maize varieties.


Asunto(s)
Sequías , Zea mays , Hojas de la Planta/genética , Sitios de Carácter Cuantitativo/genética , RNA-Seq , Estrés Fisiológico/genética , Zea mays/genética
8.
Cancer Manag Res ; 13: 3123-3132, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33859498

RESUMEN

PURPOSE: This study aimed to explore the function and clinical significance of AVL9 in colorectal cancer (CRC). MATERIALS AND METHODS: The GEO, TCGA, and GEPIA databases were searched to evaluate the expression level of AVL9, while the SurvExpress online tool was used to explore its related clinical survival prognosis. The cBioPortal and LinkedOmics databases were used to identify AVL9 expression-related genes. Protein-protein interaction (PPI) networks were analyzed using Cytoscape 3.7.1 and DAVID6.8, which was used to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) signal pathway enrichment. The immunohistochemistry of AVL9 in CRC was detected using an online tool protein atlas. RNA isolation and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) assays were used to detect AVL9 expression in tissue and plasma samples. RESULTS: Our study confirmed that AVL9 was highly expressed in CRC lesions versus the adjacent normal tissues (P < 0.001). High AVL9 expression was negatively associated with survival outcomes (P < 0.05). GO analysis showed that AVL9 expression-related genes were enriched in single organismal cell-cell adhesion, post-transcriptional regulation of gene expression, and negative regulation of the vascular endothelial growth factor receptor signaling pathway (P < 0.05). On a KEGG pathway analysis, these genes were mainly involved in progesterone-mediated oocyte maturation, axon guidance, the insulin signaling pathway, and the ubiquitin-mediated proteolysis signaling pathways (P < 0.05). In the PPI analysis, the KBTBD2, KIAA1147, EPDR1, and RNF216 genes interacted with AVL9, and GEPIA predicted that their expression levels were all positively correlated with AVL9. Furthermore, a clinicopathological parameter analysis found that high AVL9 expression was positively correlated with differentiation and TNM stage. RT-qPCR analysis further showed that plasma AVL9 expression was upregulated in CRC patients versus healthy controls. CONCLUSION: AVL9 could serve as a potential biomarker and therapeutic target for CRC.

9.
J Org Chem ; 84(21): 14045-14052, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31589040

RESUMEN

Silver-mediated intramolecular α-C(sp3)-H bond functionalization of the methylthio group has been established in the presence of Selectfluor as an additive. This novel strategy provides efficient access to various diverse sulfur-based heterocycles with good yields and functional group compatibility. It is noteworthy that the completely novel benzooxathiin-4-imine skeletons were reported for the first time in this study.

10.
J Mol Graph Model ; 92: 32-43, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31306864

RESUMEN

The structural, fluorescence properties and binding interaction of benzazaborole derivatives 1-hydroxy-2-(α-methyl) benzyl-1,2-benzo boron nitrogen heterocyclic-3-phosphate diethyl ester (PADE) and 1-hydroxy-2-(2-chloro) benzyl-1,2-benzo boron nitrogen heterocyclic-3-phosphate diethyl ester (PADC) with iodide ion have been investigated utilizing density functional theory (DFT) and Time-dependent density functional theory (TD-DFT) method, in which the PADE and PADC showed strong emission in aqueous solution and fluorescence quenching was observed upon addition of iodide ion. The theoretical study indicates that the strong hydrogen-bond (O-H…I) between benzazaborole derivatives and iodide ion leads to the formation of the benzazaborole-iodide ion complexes. The excited state properties have been explored by theoretical calculation to understand the fluorescent quenching upon introduction of iodide ion. The strong fluorescent emission is originated by the electron transfer from benzyl and phosphate moieties to benzo boron nitrogen fused heterocycle moiety, while the fluorescence quenching is attributed to the electron transfer between the PADE (PADC) and iodide ion. The density difference (EDD) maps and the frontier molecular orbitals diagrams during excitation and de-excitation process demonstrate that the photoinduced electron transfer process between PADE (PADC) and iodide ion leads to fluorescence quenching after a significant internal conversion.


Asunto(s)
Colorantes Fluorescentes/química , Yoduros/química , Iones/química , Modelos Teóricos , Teoría Funcional de la Densidad , Transporte de Electrón , Fluorescencia , Enlace de Hidrógeno , Modelos Moleculares , Conformación Molecular , Estructura Molecular
11.
Microb Pathog ; 111: 435-439, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28917671

RESUMEN

Beauveria bassiana is a potential candidate for use as an environmentally friendly bio-pesticide. We studied the infection process and histopathology of B. bassiana strain NDBJJ-BFG infection of the Colorado potato beetle (Leptinotarsa decemlineata) using scanning electron microscopy and hematoxylin-eosin staining of tissue sections. The results show that the fungus penetrated the insect epidermis through germ tubes and appressoria after spraying the larvae with conidial suspensions. The conidia began to germinate after 24 h and invade the epidermis. After 48 h, the conidia invaded the larvae with germ tubes and began to enter the haemocoel. By 72 h, hyphae had covered the host surface and had colonized the body cavity. The dermal layer was dissolved, muscle tissues were ruptured and adipose tissue was removed. The mycelium had damaged the intestinal wall muscles, and invaded into intestinal wall and midfield cells resulting in cell separation and tracheal deformation. After 96 h of inoculation, the internal structure of the larvae was destroyed. The research shows that B. bassiana NDBJJ-BFG surface inoculation resulted in a series of histopathological changes to the potato beetle larvae that proved lethal within 72 h. This indicated that this fungus has a high pathogenicity to Colorado potato beetle larvae.


Asunto(s)
Beauveria/fisiología , Escarabajos/microbiología , Animales , Beauveria/crecimiento & desarrollo , Beauveria/ultraestructura , Larva/microbiología , Control Biológico de Vectores , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/ultraestructura
12.
Chem Biol Interact ; 268: 111-118, 2017 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-28284660

RESUMEN

Locoism threatens the sustainable development of animal husbandry in areas around the world with intensified desertification, especially in the western United States, western China, Canada, and Mexico, among other countries. This study was conducted to discover potential serum biomarkers in locoweed-poisoned rabbits and lay a foundation for early diagnosis of locoism. We performed iTRAQ labeling coupled with two-dimensional liquid chromatography-tandem mass spectrometry (2D LC-MS/MS), comparing locoweed-poisoned rabbits and healthy controls. A total of 78 differentially-expressed proteins (fold change > 1.5 or < 0.67) were identified in the locoweed-poisoned rabbits compared to healthy controls. We found that 57.70% of differentially-expressed proteins were functionally related, and through bioinformatics analysis, we were able to construct a network mainly in complement and coagulation cascades. Significant differences in thrombospondin 4 (THBS4), kininogen 1 (KNG1), hemoglobin (HBB), and complement factor I (CFI) between locoweed poisoned animals and controls were found (P < 0.05) and validated by western blotting. These results suggested that locoweed could damage neurocytes, lower immunity, and form thrombi in rabbits. Our study proposes potential biomarkers for locoism diagnosis and also provides a new experimental basis to understand the pathogenesis of locoism.


Asunto(s)
Proteínas Sanguíneas/análisis , Oxytropis/envenenamiento , Proteoma/análisis , Animales , Biomarcadores/sangre , Femenino , Masculino , Proteómica , Conejos , Swainsonina/farmacología , alfa-Manosidasa/antagonistas & inhibidores
13.
Physiol Plant ; 156(1): 97-107, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26096810

RESUMEN

ADP-ribosylation factors (ARFs) are small GTP-binding proteins that regulate a wide variety of cell functions. Previously, we isolated a new ARF, ZmArf2, from maize (Zea mays). Sequence and expression characteristics indicated that ZmArf2 might play a critical role in the early stages of endosperm development. In this study, we investigated ZmArf2 function by analysis of its GTP-binding activity and subcellular localization. We also over-expressed ZmArf2 in Arabidopsis and measured organ and cell size and counted cell numbers. The expression levels of five organ size-associated genes were also determined in 35S::ZmArf2 transgenic and wild-type plants. Results showed that the recombinant ZmArf2 protein purified from Escherichia coli exhibited GTP-binding activity. Subcellular localization revealed that ZmArf2 was localized in the cytoplasm and plasma membrane. ZmArf2 over-expression in Arabidopsis showed that 35S::ZmArf2 transgenic plants were taller and had larger leaves and seeds compared to wild-type plants, which resulted from cell expansions, not an increase in cell numbers. In addition, three cell expansion-related genes, AtEXP3, AtEXP5 and AtEXP10, were upregulated in 35S::ZmArf2 transgenic lines, while the expression levels of AtGIF1 and AtGRF5, were unchanged. Collectively, our studies suggest that ZmArf2 has an active GTP-binding function, and plays a crucial role in growth and development in Arabidopsis through cell expansion mediated by cell expansion genes.


Asunto(s)
Factores de Ribosilacion-ADP/genética , Arabidopsis/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Semillas/crecimiento & desarrollo , Zea mays/genética , Factores de Ribosilacion-ADP/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Aumento de la Célula , Membrana Celular/metabolismo , Citoplasma/metabolismo , Genes Reporteros , Hojas de la Planta/citología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Semillas/citología , Semillas/genética , Regulación hacia Arriba
14.
PLoS One ; 10(11): e0143181, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26587848

RESUMEN

The formation and development of maize kernel is a complex dynamic physiological and biochemical process that involves the temporal and spatial expression of many proteins and the regulation of metabolic pathways. In this study, the protein profiles of the endosperm and pericarp at three important developmental stages were analyzed by isobaric tags for relative and absolute quantification (iTRAQ) labeling coupled with LC-MS/MS in popcorn inbred N04. Comparative quantitative proteomic analyses among developmental stages and between tissues were performed, and the protein networks were integrated. A total of 6,876 proteins were identified, of which 1,396 were nonredundant. Specific proteins and different expression patterns were observed across developmental stages and tissues. The functional annotation of the identified proteins revealed the importance of metabolic and cellular processes, and binding and catalytic activities for the development of the tissues. The whole, endosperm-specific and pericarp-specific protein networks integrated 125, 9 and 77 proteins, respectively, which were involved in 54 KEGG pathways and reflected their complex metabolic interactions. Confirmation for the iTRAQ endosperm proteins by two-dimensional gel electrophoresis showed that 44.44% proteins were commonly found. However, the concordance between mRNA level and the protein abundance varied across different proteins, stages, tissues and inbred lines, according to the gene cloning and expression analyses of four relevant proteins with important functions and different expression levels. But the result by western blot showed their same expression tendency for the four proteins as by iTRAQ. These results could provide new insights into the developmental mechanisms of endosperm and pericarp, and grain formation in maize.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Proteoma , Semillas/crecimiento & desarrollo , Zea mays/metabolismo , Catálisis , Cromatografía Liquida , Análisis por Conglomerados , Electroforesis en Gel Bidimensional , Endospermo/metabolismo , Etiquetas de Secuencia Expresada , Perfilación de la Expresión Génica , Microscopía Electrónica de Rastreo , Proteómica , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...